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ABSTRACT

The present report describes theoretical research carried out under

NASA contract NASw-1586 during the twelve months ending January 24, 1968.

Studies have been made of the boundary layer in a plasma in which the electron

and heavy particle temperatures may be different. The problem is formulated

from the viewpoint of multi-fluid magnetohydrodynamics (MHD). It differs

from earlier treatments in that the complete electron energy equation is

retained so that one must consider the plasma sheath in order to establish a

boundary condition at the wall on the electron temperature. In our initial

studies a two-dimensional, laminar, steady flow is assumed. We also assume

infinitely fast ionization and recombination rates so that the electron density

can be calculated from the Saha equation at the electron temperature.

Actual calculations have been carried out along a channel wall which is partly

insulator and partly thermionically emitting electrode. For the initial studies,

restricted to a non-emitting insulator, we used the method of local similarity

to solve our equations. All later studies have used a finite difference scheme

and the exact equations. Results obtained demonstrate that the electron tem-

perature can differ significantly from the heavy particle temperature and is

very dependent on the magnetic field, thermionic emission and current level.
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I. INTRODUCTION

Several attempts have been made to analyze the magnet.hydrodynamic

boundary layer occurring in the internal flow of a compressible plasma, in

order to determine _kin friction, heat transfer, and potential differences

between wall and external stream for both electrode and insulator surfaces.

The first such attempt was by Kerrebrock 1'2. He considered the equilibrium

electrode boundary layer in a magnet.hydrodynamic accelerator having

constant external static temperature and cooled electrodes. He argued that

in the immediate vicinity of the electrode the conductivity would be low be-

cause of the cooling. This would lead tO considerable Joule heating of the

gas near the wall resulting in large temperature gradients and high heat

transfer rates. Kerrebrock's calculations bore out these expectations. It

was felt that these results were not realistic because the electrons would

not be in equilibrium with the heavy species. Accordingly, Oates 3 made a

rough estimate of boundary layer behavior considering the electrons to be

at an elevated temperature. He found that the increased conductivity near

the wall over that found on the basis of equilibrium theory greatly reduced the

Joule heating. He found that transport of enthalpy to the walls by electrons

was enhanced because of the increased electron temperature. He further

pointed out that when the electron transport of enthalpy is significant, there

is a considerably larger heat flux to the anode than to the cathode. In

Oates' analysis, the electron temperature was determined on the basis of

a simple energy balance rather than the complete electron energy equation,

and as a result no "sheath" analysis was carried out.

In the above described analyses the Hall effect, ion slip, and electron

pressure gradient effects were neglected in the Ohm's Law. Finally, the

solutions were obtained by the approximate method of local similarity, and

did not allow for such things as finite segmentation of the electrodes.

For the insulator boundary layer an analysis has been carried out by

Hale 2 who also used the assumption of local similarity, but did include the

Hall effect. Hale, however, considered the non-equilibrium effect by assuming



a conductivity relationship _ = C;(j) rather than by accounting for the behavior

of electron temperature. This again obviated the need for an examination of

the "sheath". Nonetheless, this study did demonstrate the possibility of

enhanced heat flux due to nonequilibrium ionization, as well as temperature

and velocity overshoots.

The present study has as its objective a more refined treatment of

the nonequilibrium boundary layer development through the use of multifluid

magnetohydrodynamics. A set of conservation equations is written for each

constituent of the working fluid. These equations are in turn reduced and

combined to achieve a usable set of equations for a two temperature plasma -

one where the electrons may be at a temperature that is significantly different

from that of the heavy particles. The formulation is somewhat like those of

the two temperature treatments of Camac and Kemp 4 and Dix 5 except that

their problems were generally nonflowing and noncurrent carrying, whereas

Joule heating and Lorentz forces are essential features of generators and

accelerators.

The first portion of this report formulates the equations to be used

in treating this problem and their boundary conditions. In the second part

we formulate the numerical techniques necessary for their solution. Here

both the finite difference and local similarity approaches are developed.

Finally, some solutions for problems of interest are presented and discussed.

The influence of the sheath, magnetic field, thermionic emission, etc. are

all illustrated by the solutions obtained.

2



II. BOUNDARY LAYER EQUATIONS FOR TWO TEMPERATURE PLASMA

i. Characteristic Quantities

To better define the physical character of the ionized gas being studied,

it is useful to establish typical magnitudes of the quantities of interest. Most

pertinent are the characteristic lengths since we wish to formulate a boundary

layer study.

Gas stagnation temperature

Gas static temperature

Wall temperature

Electron temperature

Gas particle density

Electron density

Electron-electron cross section

Electron-neutral cross section

Magnetic field strength

Electron debye length

Electron-electron mean free path

Electron-neutral mean free path

Neutral-neutral mean free path

Ion-neutral mean free path

Ion-ion mean free path

Electron-ion mean free path

Boundary layer thickness

Electron gyro-radius

Ion gyro- radius

2000°K

400-2000°K

1500°K

1700-10, O00°K

19 -3
10 cm

15 -3
i0 cm

-13 2
5 x I0 cm

-16 Z
10 cm

20,000 gauss

-5
2x l0 cm

-2
.2x i0 cm

-3
10 cm

-4
10 cm

10 -3 10 -2- cm

• 2 x l0 -2 cm

-2
.5x i0 cm

0. 1-1.0 cm

I. 5 x 10 -4 cm

-2
i0 cm

We note that the electron Debye length is much smaller than all mean

free paths and also smaller than the electron gyro-radius. We will therefore

assume a collision free sheath free of magnetic effects• Again, the boundary

layer thickness is larger than all mean free paths and gyro-radii, so we are

justified in pursuing a continuum-type approach the fluid flow problem, The

above estimates, of course, must be continually reviewed as the solution is

carried out. 3



2. A s sumption s

The formulation of our problem will be for a two temperature plasma

under the following simplifying assumptions:

b

i. Steady flow b t - 0

2. Laminar flow

o

4.

.

.

No induced magnetic fields R -_ 0
m

Plasma consists only of electrons, atoms (carrier and seed),

and singly ionized seed ions

Plasma composition determined by Saha equation evaluated at

the electron temperature

No continuum radiation losses

7. Collision free plasma sheath

8. Only thermionic emission

9. Neglect pressure differences normal to wall.

The general geometry of the two types of channels which will be of

interest are shown in Figure I. The boundary layer on any of the four walls

can be studied.

3. Basic Equations

For the two dimensional boundary layer, and the geometries of

Figure i, the basic equations can be written as follows.

Mass Conservation:

b
(pu)+-7- (pv):o

c_x ay
(i)

Momentum Equation:

Longitudinal - -

@u _u 8p +
pu-_- x +pv'_-y = " _x -_y

Spanwise (Insulator wall only) --

_w bw

--+pv - +jx Bpu @x by by y

I 8-_Y 1 { B (electrode)

Jy z

B (insulator)
+ "Jz y

bw

(2a)

(2b)

4



ELECTRODE (ACCELERATOR CATHODE
OR GENERATOR ANODE )

IN SULATOR

ACCELERATOR

ly
INSULATOR

GENERATOR
Z

ELECTRODE (ACCELERATOR CATHODE

OR GENERATOR ANODE)

(A) GEOMETRY FOR ELECTRODE BOUNDARY LAYER

ELECTRODE

Figure i.

I_IACCELER-T _./_x/H ELECTRODE

ATOR _ "G_EN. _ J

L INSULATOR

(B) GEOMETRY FOR INSULATOR BOUNDARY LAYER

N207- O24

Geometries of electrode and insulator boundary layers in channel
flow devices
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Conservation of Energy (Static enthalpy form):

h':" _h* _p

- u - -- (qy)pu-_- x + pv _y _x by

+ jE +
x x

(Su _2

Conservation of Electron Energy:

- u B 2) (electrode)

(E + uB ) (insulator)
z y

(3)

T _ _ _w _n

3 kun e 3 e 3 e 3 e
e _x + _ kur + kvn +-_ kvTe _x 2" e _y e _y

5+ n _kTe e

:E j +
x e

x

+ e TeJe
+ I _ + -"_-y Ke _y Y

Je (E -uB ) (electrode)y z
Y

Je (Ez ÷ UBz ) (insulator)
z

V
e _n _n

e e (4)k (T - T ) E --s - lu-- -Iv-
+ 3 Pe e m _x _y

s

These latter two relations can be rewritten, making use of the

Saha relation, as shown in Appendix A and B. The results are given below

for an electrode wall alone. The modification needed to study an insulator

boundary layer is quite straight forward.

Overall Energy Conservation:

duco _u
_h _h _ _ p u --u +

Pu'_'-x +Pv _y co co dx 2 _ ( _ T 5kT )+-_y El<. + .__.__ez'_-y 2e Je
i Y

_TjyE 1 _ e = uS+ .ixE + - I uSx y x

du

2 _x + uS3 jyBz - uS3 pcouco

____e _ vS 2 _h+ vS 1 _ y _y - n e jyB z duu _h v _hu p u h _x h
P

(5)



Electron Energy Conservation:

3T
3
-- I-ILln

2 e bx

3 e 3 bTe 5h

-- + -;_kVne _ _ + _ t_r e " u S 1 _ _ - Sz

3
+

B -p u -- + _ kT
$3 y_ z _ = dx e

+ n
e[ ]I_i _,5 _ bp

kT =I _l _P---_---+pv
e _x 5y

E
X Je : (Ey - UBz ) Je + 3 p k(T-Te e ) Es

x y

+I v S 1 by - 2"_y

3 (K bT 5 k
__ .-- _____e --T

_y e 6y 2 e

e
S

171

S

eJe
Y

(6)

)

To complete the fomnulation of our problem,

current and satisfy _Xlaxxvell's equations. Thus,

Current Conservation:

we nlust conserve

v • L : o (7)
Electric Field Relation:

v x E : o (_)

Finally, the individual species n_omentum is conserved by satisfying

a generalized Ohm's law.

Generalized Ohm's Law:

J : q [ ) E -/3 (E -uB )] (9)
)2 Z (l+_e_i x e y z

x ( l+_e_ i + _ e

j : _ [(1+_ #.) (z -uB )-' _ Z ] (10)
Y (l+fl _.)2 +_2 e i y z e x

e 1 e

where the electron inertia and electron pressure gradients have been neglected.

Next, we observe that if we try to satisfy Eq's. (7) and (8) explicitly

we have for the two-din_ensional problem the following relations:

"x . = 0 (7a)
bx _y

and



_E _E
x __ (8a)

_y - _x

along with Eq's. (9) and (i0). Now, even if we assumed the flow field, gas

conditions and electron temperature known, the above four equations lead to

a nonlinear "elliptic" partial differential equation for the current stream

function. If this equation must then be solved as part of the system, one cannot

solve a boundary layer problem which is "parabolic" in character. Further-

imore, the effects of finite electrical resistivity of the plasma are such that

the significant variations in current density and electric field are no____tre-

stricted to a narrow layer in the neighborhood of the wall.

Accordingly, since we still wish to treat a boundarylayer type of

problem we must abandon hope of satisfying (7a) and (Sa) exactly and look for

a procedure whereby they can be satisfied approximately. Such a procedure

is available if we assume that the boundary layer thickness is small compared

to the electrode or insulator segment lengths on the electrode wall.

In the analysis of the inviscid problem 6, one obtains jy(X) along the

electrode and E (x) along the insulator. The boundary layer problem can then
X

be handled by making the following assumptions:

: (x), E : 0 for ally's.I. Over an electrode segment jy jy x

= 0, E = E (x) for all y's.
Z. Over an insulator segment jy x x_

With these assumptions Eq's. (7a) and (Sa) are satisfied approximately and

one must then only satisfy the Ohm's law at every point within the boundary

layer.

Working with Eq's. (9) and (I0) we can obtain expressions for JxEx ,

jyEy, Jex, and Je as is shown in Appendix C. Substituting these into Eq's.

(5) and (6) yield tle following results:



+uB j
z y_

]y= du

bT 3h .

__e _ uS + uS3 B - uS3 p u ---I uS I bx 2-_-X-X z = = dx

du

_T bh B -n u . II

+ vS l__ye vS 2"_y . e p 3y= z P p=u d-_

u bh

h bx h

Electron Energy Conservation:

3ku n e 3 e 3
-2 e _x +-_kvn --+ _kT +I xe by e

_T bh----9-e- S 2 + S3Jy= Bu Sl bx _ z

_T
e

v SI By

du

- S3P u -_-_x

5 k
--T

--+_ e e

(7

1t 1

+n e kT + I pue OK

2
E

x

+ 3m n k (T-T) E
e e e

s

e
s

m
$

(11)

(12)



4. Boundary Conditions

To complete the formulation, we must specify boundary conditions.

At the outer edge of the boundary layer we have from the results of channel

flow calculations

u (®) = u (x)

p (=) = p=(x)

T (®) : T (x)

T (®) : T (x)
e

Along the wall we have

u(O): v(O): o

T(0) : Tw(X ) or q(0) : qw(X)

To establish the inner boundary condition on the electron tempera-

tare T , we must consider the nature of the plasma sheath. The sheath
e

will be considered collision-free and free of magnetic effects. The validity

of such a treatment depends on the Debye length being much smaller than

both the electron cyclotron radius and the electron mean free path. Such

conditions obtain in the external channel flow but it is not clear that the

desired length ordering is appropriate at the wall. In fact, it can be shown

that if in the external stream the electron gyro radius is say ten times the

Debye length, then just a 25_0 reduction in electron temperature will equalize

the two lengths. Such a reduction may well occur in the boundary layer.

Nevertheless, let us now consider the ideal sheath.

Consider the surface at y = 0 (Fig. 2). The net current density in the

positive y direction is that due to electron arrival at the wall minus the sum

of the current densities due to ion arrival at the wall and electron emission

from the wall 4. For the present problem where the only ions present are

seed ions, the net current density normal to the wall can be expressed as

m

kT
n e<V > e
e e w

e (13)
(Jy)w : 4

- n. eV. - i
1 I W

I0

L



SHEATH

(e)

(b)

(a)

(b)

(c)

current density due to electron

arrival at wall

e_O
n e<V> kT

e e e
e

4

current density due to electron

arrival at outer edge of sheath

n e<_V >
e e

4

current density due to ions entering

sheath (all these ions reach the wall

since they are accelerated by the

sheath drop)

n. eV.
1 1

(d)

(e)

electron emission current density i
w

net current density jy

Figure 2. Contributions to current density at wall

Ii



where n , n refer to the number densities at the edge of the sheath (n
e 1 e

for singly ionized ions), where

8kT e
<V > w

e _m
e

: n.
1

kT e
V. _ w
i m

i

Tew being the electron temperature at the sheath edge, and where the emission

current density i is dependent on the surface temperature and work function
w

of the surface. This gives one relation between the electron temperature at

the sheath edge T and the sheath drop, A_.*
e
w

A second relation is obtained from continuity of electron energy flux

4
at the sheath interface between continuum and molecular descriptions .

Thus,

_Ze_ Je 12 i> n <V > kTe
____ 5 _ kT = kT + e I _ e e WK -- e -i --

+2 e e e we
e oy ] w w w

(14)

where g is the average energy of a thermionically emitted electron as it

crosses the sheath interface, and will be taken equal to (2kT + e _0).
w

Between the two relations (13) and (14) we have the sheath drop _O and the

mixed inner boundary condition on T .
e

* The anode sheath drop is slightly less than the difference between plasma

and floating potentials while the cathode sheath drop exceeds the afore-

mentioned potential difference.

12



SOLUTION PROCEDURES FOR NON-SIMILAR BOUNDARY LAYERS

Equations in Transformed Plane

The boundary layer equations so far presented are a set of nonlinear

partial differential equations dependent on two space variables. It has been

common at this point to seek a similarity transformation that would reduce

the dependence to just one independent variable. Such a transformation has

in fact been carried out. While complete similarity is not attainable, by

suitable approximations a form of local similarity (the longitudinal distance

appears as a parameter but not in differentiations) can be obtained. While

clearly inadequate for the regions of finite segmentation, the local similarity

procedure allows solution of the boundary layer equations from a stagnation

point or from a leading edge up to the region of segmentation. The solution

may then be continued by a finite difference procedure in the plane of the

transformed variables with the longitudinal step size determinedby electrode

length and spacing.

The new independent variables are those of the Levy-Lees trans-

fo r_mation.

Y

¢ (x) : f (p_i)r u dx

0

so that

n (x, y) _

pu

U

AZ

Y

f pdy

O

U

8

_¢ +Ux _

and where

V -
z_ ..

(p/_) u
r

X

13



Equations (i), (Z), (ii), and (IZ)become

Continuity:

_f, _V f, 0

du ,Z 6
Z_ f'---- + V ---- =

(15)

(16)

Energy:
dh 2_ u du

Z_f' "_'_ + V _--_ + _ _- ------- d---_-(i'IS3) f'gh d_ h_

2 I i
• e Z x

e IJY_ _O + 5 _ --5 _ ----- -- _7
+ Z (p_) u G T e _7 Z (p_)rU C T e

r _ P

_'- kT &' E
v/_kT of' " e_ Z x

e i Jy== 5 _-- O
5 = O+-- C T e
-- u G T e Z (p_) u

+ Z (P_)r == P =_ r == P
Z

I x 3y== (l+fl e i g

+ _--T p=u e i

Z_Bzjy f'g e _8- gf, ----

'" (l'IS 3) "-C T P_ 5_
C T==p u== p+ (P_)r p

dT
e

 SIT v _ ISz(Z¢)
e _O gf'O +- - gf' _

pC T g _ pC T
p

ISzV __i_+iSz(Z_) (dT __ Z_Ine

" (17)

(continued on next pa

14



In

e

C T p

In (2_) dT
e e

C T2p d_
p _

f'g +

IneJy (2_)B z

p(P_) p C T u
r = p co co

gf'

Iu n (2_) du
oo e

pC T d_
p co

gf' (17

cont'd)

Electron Energy:

3 r e

• kn + _ kT e+Ie e 2_OD

[f'e e ] 3+ 2_ T d_ - $2 _ kTe
e =o

= 2_ f' 36) 3e_7+v _--f

](,hu )I(P_)r _ '_
e+i 2_ 2gf,-_

_I_ dT= ] 13kTe i) 3 du=
+ v _-_-+ 2[ - fT

2 Cp(p T

(_ i) S3Jy = _ u_ _)r e ( "-'_-_ /
+ kT @ + " B u f' - =o @ 3e

eoo z = 2_ g _--_ k

u P uP= = 5 k @ co= 5k

T jy=_--(ea., )- d2_r-- T E --(Ca )_/_ 2 e e I 2 e e x 5_ 2g = g _ 0_

+I • 2_f' -
+ ne kTe=@ _-_'g _ + V _17 P=

.2

2 u JY= [(l+;_e_i)2+ _]
= E +--

e_i)2 2x= (1+_ a (l+_e_i)

+ 3m n kT -- - E
e e e T rn

co s s

(18)
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2. Finite Difference Form of Equations

Of the many finite-difference schemes that can be employed to solve

the boundary layer equations, the implicit procedure of Blottner (references

7 and 8) is adopted for the present study. Implicit procedures are less

likely to have stability difficulties as encountered with explicit schemes and

the truncation error is of higher order than in the explicit schemes.

The flow field is divided into a grid or mesh as indicated in the

following sketch:

n+l

n-I

" t

m m+l

• KNOWN POINT

x UNKNOWN POINT

It is assumed that all the dependent quantities are know at the grid points in

th 1)ththe m column but unknown in the (m+ column. In the implicit scheme,

the various derivatures are replaced by linear difference quotients and the

1

partial differential equations are evaluated at (m + _, n). For example,

consider the functions M (_ , 77) and N (_ ,T/). The difference quotients at

I

this point (m + _, n) are

M -M
_M _ re+l, n m, n

_M (M ) + (Mm+l,n+l - Mm+l,n-1 ) /2 A_

16



where M
(M M _1)m, n+l m, n

2_N

_2M M

2 -

- + Mm+ 1+ (Mm+l,n+l 2Mm+l,n ,n-1
)/(A_) 2

where M

M -2M +M
m,n+l m,n re, n-1

(M -M )
m+l,n+l m+l,n-1

2A7/

_M _N I [

r7 b_ - _ [ M
(Nm+l, n+l - Nm+ 1 ,n-1 ) + N (Mm+ 1 , n+l

-M
m+l, n - 1,]

Product terms are written

M2 -" Mm, n Mm+l
,n

,[ Nm+l, ]MN = _- M +M N
m,n n m+l,n m,n

In all of the above equations, terms of order ( A_)2 and (Atl) 2 have been

neglected. To preserve the linearityof the difference equations, terms of

the following form are approximated as

17



5M 1 _N Mm+l, n m, n

N = N + +..
m, n _- m, n

N (M -M )
m, n m+l, n m, n

When the difference quotients and terms of the above equations are

substituted in the boundary layer equations (16) to (18), the resulting linear

difference equations are written

A W + B W + C W = D (19)
n n+l n n n n-1 n

whose quantities are the matrices

W
I%

m+l, n

= gm+l, n

@re+l, n

Ail O O ]

An = A2 1 A22 A23

O O A33

[11B12o][cllooIo,B n = BZI B22 B23 'C n = C21 C22 CZ3

O C33_1B31 B32 B33

[DI]D n = D 2

D 3

The top, middle and bottom lines of the matrix equation {19) are

respectively the momentum, energy and electron energy equations. The

continuity equation is invoked to calculate V knowing the values of f'
m+l, n+ 1 '

f' and f'
m+l,n re+l, n- 1 "

The elements of the matrices A , Bn, C and D are given inn n n

Appendix D.

18



At the wall we want a linear B.C. to fit in with out linear system

of finite difference equations. Thus,

fl

w I = Hw 2 + Fw 3 + h w = _ m + l,n

We note that f' = 0 at the wall (n=l). Also, Twall = const, so g l = Tw/T

gw(_). For @ we have problems. We have two equations to work with,

containing O and /k@, and have to eliminate A_ between them. So

e [
n e <V > kT O / kT O

e e e w _ e w• + i = w _

Jy= w 4 e - n ee m
W C

(19a)

each

and

I< T +-2 e e w e w
e e w ey _

W

×

alternately,

-e I_0 1

n <V > kT @

e o)w _ . _ + eA
4 e e

+ e ×

j +i =
y_ w

e,,l_O_ +iw gw+e)___ 5

\_ _/_z kT e

20 + el" l
w kT

e

Ow _ kT 8

e w
oD

-n

e w m c

Next write

W

-381+482-03

2/x_

Then we have

19



or

_,c (p_) u_ -3@

1 +40 2 -O 3 + _ O
2A_ e

2e + La_ I
1 kT

_kT O

e i

- n e
e m
w c

e

+ kT e÷ wWC --q

(jy + i )(201+ elaO I )- XCP(P#)rU_ (-301+402-03)
w kTe k _ 2&r_

O_
+_ ey w

/ _ _ kTe @1 [ e'A'' 1
2Tin e_O - en _ 201 + •

+ iw_q gw + k--_e=/ ew m c kTe=

We find I _ I from the ist of our original two equations

w e_/ m
w C

= e

L en e kT O +e 1
W

e 4 _/ _ mcen 8kT O
e e 1
Vq

2_7m J
e -1

= a
m

c

SOj

el _ I = _ In a "I

kT 8
e 1

= in a or
kT

e

= O 1 ina

2O



" (2+in a) + 2i
Jy_ w

 en,Je
W"

kT e @I

m
S

+

3_c (p_) u
p r

2k _- A r/

(2+ Ina) = <

XC (pbL)rU e 1
P 0

2kV_ alrl

+i
3 w

e

w

2X Ck_g_p(p_i)ruA77_e I

(2T).Te_ gw

@
2

This is highly non-linear in @
I"

treat @ i in _ and "a" terms as 63

are 63m+i, 1 etc. Actually,

m + 1/2, n. So,

63m+ 11 1 +0 [2 mll = B2

Since we wish to deal with a linear system

m, 1 while 63i' 82, 633 in linear terms

we must express our boundary condition at

em+12  m212+ ]B3 m+ll 3 m a 3

where

+C

B _

- Z+ In a ] [• + en -- + - + 2i

JY_ ew ms 2k _ ai_ _" J ey w w

2X iCp(P>)rU= e

1
S _- - I

3 4

R (20)

(21)

C
2T _ gw

T
e

el.

i /R
W

(22)

and whe re
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iw)j 2m ?2me e

en kT e + m
e e 1 s

W oo

n = n (gl' @l) ; lJ 1 = Je (gl'@l)ew e ey Y

w

-I

_1 = _(gl' @1 )

Also all _ dependent quantities, jy_" , u , Te_

............... _i_ be treated as an iterabie quantity.

calculation take @ 1' and for subsequent iterations takem,

Finally,

@m+l 1 = B20m+l 2 + B3@m+l,3 + [ B2@, , m, 2

or

, are evaluated at m + 1/2

That is, for first

1+ 1@m r @m+ 1 t

2

+ B3@ -@ + C]m, 3 m, 1

era+l, i --B2@m+l, 2 + B3@m+l, 3 + B4

Then

[.ooo][ooo]H = 0 0 0 F = 0 0 0

0 0 B 2 0 0 B 3

h

0

gl

B 4

(23)

where °_I = T /Tw ®m+l and T = constant, T®m+l corresponds
W

to T®(_) evaluated when _ corresponds

to m + 1 location.
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3. Determination of External Conditions

Analyses of complete MHD generator channels are generally one-

dimensional. The variations of flow and electric quantities predicted from

such analyses are usually continuous since they ignore the details of any

finite electrode structure. Such calculations may be considered to repre-

sent what goes on in the core of the generator channel but do not necessarily

provide outer "inviscid" conditions for a boundary layer analysis.

Consider for example the problem of determining exterior conditions

for J and E along a segmented electrode wall (Figure 3). The uppermost
y x

sketch in Figure 3 depicts the results of one dimensional flow calculations

for a non-equilibrium generator. Numerous such calculations for constant-

area, segmented-electrode Faraday generators using noble carrier gases

and alkali seed gases have been carried out by Highway and Nichols

(reference i0). The portion of the continuous current distribution assigned

to a given electrode pair must now be distributed. The current streamlines

within the cell boundaries for a given pair of electrodes are estimated from

the results of Hurwitz, ICilb and Sutton (reference 8) as recently modified

for non-equilibrium conductivity (_= _ IJ[ ) ) by Sherman II. Over an

electrode Jy_(X) is according to the solid curve shown while Ex_(X) = 0.

Over the insulator portion between adjacent electrode segments Jy_(X) = 0

and Ex_ (x) is given by the dotted curve.

It is implied by this kind of argument that the characteristic thickness

for accommodation of electrical quantities to the discrete electrode structure

is large compared to the viscous and thermal boundary layer thicknesses.

It must be realized that the relative scale of these phenomena is inverse to

some power of the appropriate magnetic Prandtl number. Since for the

expected working fluids Pr << I, it is felt that a procedure as described
m

by Figure 3 is justified for the electrical quantities.

In the absence of better information, the external velocity and enthalpy

distribution were taken to be the same as at channel centerline (one-dimensional).
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4. Initial Profile - Local Similarity

The calculation can proceed by finite differences over a finitely

segmented electrode wall. However, an initial profile will always be needed.

If the boundarylayer development is assumed to begin from a sharp leading

edge the profiles at _ = 0 will be similar. If we assume, on the other hand,

that it develops from a nozzle then an initial profile can be obtained by

assuming local similarity. That is, _ - 0 and _ = parameter so that we

only have to integrate over 77.

In the final section of this report we will describe some locally

similar solutions as well as a finite difference solution starting at a leading

edge. The former is convenient as the calculation is simplified so that

many different cases can be studied.
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IV. EXAMPLES AND DISCUSSION

i. General Description of Example

The channel flow which we have taken as a basis for our initial

boundary layer calculations has been developed by Les Nichols and is his

case #001351 dated Nov. 16, 1966. He chose the following conditions for the

channel flow.

II = 0. 700

T ° = 2000°K

05 newtons
Seed = 0.01 pO = 2 x 1 2

m

M = 0.500 B : I0,000 gauss

Argon + Cesium

The _ variation of velocity, gas temperature, pressure, and density

can be taken from his calculation. However, for the subsonic case the

variations over the first and second electrode pairs are slight, so we have

assumed them to be zero. Thus,

u = 395.61 meters/second
co

T = 1920°K

p -- 164,000 newtons/m 2

p = 0.5 l<g/m 3

-i/4
In addition we have taken _ = g and PR = 2/3. For the generator con-

sidered by Nichols the first electrode would be approximately 34 inches from

the nozzle throat. This would correspond to a value of _ = .01, and the

locally similar solutions have been carried out at this location. The finite

difference solutions, on the other hand, have been started from a sharp

leading edge at _ = 0. The geometry and dimensions are shown in Figure 4.

For the electrical quantities and T we cannot use the channel flow
e

values directly as they assume an infinitely fine segmentation whereas we

are calculating a boundary layer with finite segments. Estimates obtained

from several analytical calculations show that Te_ will vary by only several

degrees over an electrode for the case cited above. Therefore, for these
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initial calculations we have assumed T e constant as well.
o0

Finally, we have allowedjy_ and Ex_ to have the following average

values at the channel centerline.

2
= -75 amps/m

Jy_

E
X

mm

200 volts/meter

These values are actually not representative of any specific channel design

but rather were chosen to illustrate the phenomena caused by currents and

__._'_I --
_._i electric fields. Using these, _ distributions were assumed using

constant property channel flow solutions including Hall effects as a guide.

These, as well as the B field and thermionic emission distributions chosen are

shown in Section iV 3.

2. Locally Similar Solutions on Insulator Wall with B = 0

Before attempting the more difficult problem of a finite electrode in

an insulator wall, we have obtained locally similar solutions when B = 0 on

an insulator alone. Such solutions, aside from their obvious usefulness,

can also be used as starting profiles for the more complete finite difference

solutions.

Our basic equations reduced to local similarity form are shown in

Eq.'s (17), (18), (19), and (20) of Appendix E. They have been solved by

nu1_erical integration (Runge-I<utta) using an iteration scheme on the unknown

wall values of 8 , g' , and f" . The principal difficulty was the large value

of @' at the wall which demanded a very fine interval for integration. A

computer program was written to carry out this solution and is shown in

Appendix F.

Solutions obtained for various wall temperatures and _ locations are

shown in Appendix E. It was particularly interesting to find the electron

temperature to differ so widely from the gas and wall temperatures even

though in the free stream they were assumed equal. Since there was no

current flowing or electric or magnetic fields applied, the conclusion one

must draw is that the gradients within the boundary layer and wall sheath

boundary condition are the causes.
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1 Boundary Layer Over Finite Electrode Segment with B _ 0

In order to carry out the finite difference solution we had to establish

a method for the solution of Eq's. (19) along with the appropriate boundary

conditions. They are in a form identical to Blottner's so that his calculation

procedure can be followed 8. Due to the special form of the equations an

algorithin exists which makes digital solution quite efficient. The vectors

W and W may be related by
n n+l

W = E W + e W =|_'|f
n n n+ 1 n n

whe re

(24)

E
2

-('42+C2F)

B2+C2H

and

Dz-C2h

e 2 : B2+CzH

E __

n

e --

n

-.4
n

B +C E
n n n-i

D -C e
n n n-i

B +C E
n n n-i

} 3 _ n -< N-I (25)

where we must remember that E
n

ponent vector.

is a 3 x 3 matrix and e
n

is a three corn-

Knowing the iterated solution W
n

obtained as follows:

at _m' the solution at _m+l is

a) Evaluate the quantities B2, B 3 and C (Equations 20-22) using

values of the number densities and @ from the prior step
n

¢-_ ¢ ).
m

b) Knowing H, F, and h (Equation 23) evaluate E 2 and e2 after first

evaluating the components of -A2, B2, C 2 and D 2 from Appendix D.

c) Continue outward through the boundary layer evaluating E and e
n n

at each step 3 <- n _ N -i.
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d) As the outer edge of the boundary layer is not at a definite

location, the matrix E and the vector e are computed until
n n

f', g, and @ become fairly constant. The conditions from

equation (24) are

1 - Ell - Ei2 - El3 - e. < _. i = 1,2, 3l i
(26)

e)

f)

where the f. are small quantities to be determined from
1

expe rienc e.

Once the values of E and e are calculated throughout the boundary
n ii

layer, the computation then shifts to the determination of W
n

starting at the outer edge With all W N values equal to one. The

calculation is simply accomplished using eq. (24}. It is continued

in this manner to the evaluation of W2; then W 1 is determined

from Eq. (19a).

With f' and f' known, the transformed normal velocity
m, n m+l, n

parameter V is determined from the continuity equation (15).

The derivatives of the continuity equation are evaluated at the

1 1

point (m + _, n --_ ). Then Eq. (15) reduces to

Vm+l/2, n m+l/2,n-1 m+l,n m+l,n-1

_l)( )+ Zl_7 " 4 f' + f'm,n m, n-i

g) To iterate, steps (a) through (f) are repeated evaluating A,B,C,

D, E matrices and D, e vectors using values of all quantities (ex-

cluding f', g, and 8} that appear in these expressions evaluated

1

at m + _, n. That is, we work with average values at (m, n) and

(m+l,n). For the initial calculation values at only (re, n) were used.

h} Completing the solution at _ m+l we then proceed to _ m+2 and

repeat all of the above.

The above procedure has been programmed for solution on a high

speed digital computer (GE635) using Fortran IV. The flow chart is shown

in Appendix G and the program listing in Appendix H.
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As noted earlier initial calculations using the finite difference technique

have been carried out from a sharp leading edge. The distribution of imposed

conditions is illustrated in Figure 5. The magnetic field was not taken to be

uniform in _, but was instead allowed to rise from zero to its final value before

the first electrode. Due to computational difficulties the emission could not

be taken as a step function, but was instead represented by a smooth but rapid

variation to its final value on the electrode. The current was brought up grad-

ually to a peak at the downstream edge of the electrode. This is the expected

form of the current distribution over a cathode. The current and the emission

were brought back to zero smoothly but rapidly and together• Next, the

electric field was introduced rapidly and then allowed to fall off gradually as

the second electrode was approached.

Some of the results of our calculations using the above inputs are

shown in Figures 6-i0. For the hot wall case studied the voltage drop

across the boundarylayer was small. Some values at several _ locations

are presented in Table I.

A_sheath $@B. L. A V (volts)

0.95xi0 -3 .772 .011 .7B3

• IB0 .676 .013 .6B9

• IB9 .358 .015 .373

• 19B .381 .019 .400

• 252 .972 . 162 i. 13

• 280 .994 .300 I. 29

• 320 I. 05 .350 i. 40

•333 I. 04 .547 i. 59

•337 i. 06 .567 i. 63

•370 . 940 .679 i. 62

Table I. Boundary Layer and Sheath Voltage Drop

The velocity and heavy particle temperature profiles were relatively

uneffected for the case studied. The heat flux was influenced somewhat more

due to changes in _T /_y and n . Values at seveal _ values are given in
e e

Table II in watts/cm 2.
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T f'_e
_T K e (watts/cm 2)

14 By e _y eVm-- (eI) qTOT.
s

-3
0.95xi0 12.6 .041 .113 12.7

.180 9.16 .039 .015 9.21

.189 8.97 .070 .053 9.09

.198 8.75 .023 .115 8.88

.252 7.88 2.00 4.52 14.4

.280 7.91 2.28 5.29 15.5

.320 7.91 2.65 6.10 16.7

.333 7.85 2.32 5.37 15.5

.337 7.95 1.85 6.10 15.9

.370 7.75 .570 1.78 i0. i

Table II. Component of Wall Heat Flux

Also, it may be of interest to note the boundary layer thickness in

physical dimensions. Compared to an electrode width of-_ 1.4 cm we have

-i
a maximum boundary layer thickness of" i0 cm.

From these results we can make a number of significant comments

as to the quantitative effects of a magnetic field, thermionic emission, net

current flow, and axial electric fields on the boundary layer . First, we

see that introducing a magnetic field substantially lowers the electron tem-

perature at the wall. This is caused by the lowering of K by the factor

2 e
(I + _ ) which in turn has a profound effect on the electron temperature

e

boundary condition such that 8' is much larger. In fact, the electron tem-
w

perature is lowered enough so that the electron Debye length approaches the

electron gyro radius at I0,000 gauss. For stronger magnetic fields it will

be necessary to allow for magnetic effects in the sheath.

Next, we introduce thermionic emission before any net current is

drawn. As shown in Figure 6 we see that the electron temperature at the

wall rises rapidly over the initial portion of the electrode. Again this

behaviour is caused by the modification of the electron temperature boundary

condition. It is also interesting to note that an overshoot develops in the

electron temperature in this region for the same reason.
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As the level of net current passing through the boundary layer is

increased (to a maximum equal to the emission assumed) we discover that

the electron temperature at the wall no longer is increasing rapidly. This is

again related to the boundary condition where (i ÷ jy_l appears and on aw

cathode they are of opposite sign.

As the electrode is traversed we see, from Figure 7, that the over-

shoot becomes substantial. Aside from the influence of the boundary condition

this arises from the Joule heating due to the current. The related electron

density_ _e, and plasma conductivity profiles are shown in Figures 8, 9, and

I0.

At the end of the electrode the current and emission are reduced to

zero rapidly and simultaneously with no significant effect on the profiles.

Next, the axial electric field is introduced rapidly and sustained for some

distance before falling slowly to a low value. Due to the energy input (ixEx )

associated with this field, the electron temperature profile becomes thicker

although the peak electron temperature is somewhat reduced from its

maximum value at the end of the electrode.

Finally, as E is reduced the boundary layer growth falls off. At
x

the next electrode one would expect it to resume again. In any event, the

electron temperature boundary layer thickness has grow to perhaps 4 times

that of the velocity boundary layer.

As noted earlier, the electrons contribute to the heat flux somewhat

in the electrode region. It should also be pointed out that, for the case

studied here, the heavy particle temperature profile also develops a slight

overshoot.
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V. SUGGESTIONS FOR FURTHER WORK

The initial results we have obtained have been significant in that they

demonstrate important effects in a quantitative way. They however apply

only to a boundary layer starting from a sharp leading edge and extending

past one cathode segment.

To extend the present calculations we should first examine more

carefully the numerical difficulties found. The primary problem was a

tendency for the electron temperature at the wall to oscillate with increasing

, thereby requiring a very small A_ and some iteration. Such small A_,s

make extensive calculations very time consuming and expensive.

Additional calculations should be made over the anode wall as well

as over the insulator wall normal to the applied magnetic field.

Any refinements of the sheath that can be fitted into the present

framework should be made. Also, one should reexamine the assumptions

relative to the jy_ and Ex_aS obtained fromthe inviscid solution and how this

solution would be revised by the boundary layer solution we have found.

A more extensive revision would involve reformulating the problem to

allow for finite recombination and ionization rates.
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A PPENDIX A

Overall Energy Conservations for an

Electrode Wail:

_h_ b h_' _x /_u-_2 b

+ JxEx + jy (Ey - uB) (A I)

The heat flux vector is assumed to be of the fol-

lowing form.

q : Y, q. where q. = -K i VT i + Pih_Vi

Now, let us express h_' more explicitly.

1 5 kTi li

---+--h_ : h_ = Z m m
i i

so that

or

PA @s 5 kT n+rs 5 kT
h_- 5 kT + +

H Z m A p Z m p Z ms s

Pe 5 kTe Ps + I
+ +

P 2 m p m
e s

n

h,_ = h+--_e I
P

We can rewrite the heat flux vector for s as follows

Z
m n

qi = -KiVTi + m.n.h.V. + i__..___ ii V.

so that

5 kT

-- -----_e !e-.q : "i_Ki vT + m e ne Z m
e

5 kT

-EK VT - e J e
i i Ze

Then, the overall energy equation becomes

bh bh _ + [_z
pu 7Vx + pv 77 = _' _,, _'\by/

b (_ bT 5kTe 1+ _ Ki_ +-f-j Jey

+ JxEx + jy (Ey-uB)

(:_e) (n)5 b (Az)

Next, let us write

puI _x + pvI _y = I u hx

e _p+ V ______
+ V-_--y" n e bx p by

and the energy equation can be rewritten as

L _

pu-_x + pv_-_-y =Ubx

+ _ Ki _ +_ +JxEx

bn bn
+ j (E -uB) - I u ---_e + v e

y y bx by

u b._O + _
-ne Pbx p by

and the last two terms are equivalent to the

(A3)

ions

WiI" term commonly included in the energy
equ_ation.

5P
Next _ can be obtained from the momentum

equation evaluated at the free stream. Then

bu bu _p _y( bupu +pv 7  yBz

and at =

du= _p +
p=u® d""_ = - bx jyBz

du

.. :
and the energy equation becomes

_h bh du / _u _2

pu _ +pv_-- =-p=u®u _ + _by/

+ _y Ki _ + _ Je + ]xEx + "

r bne bne (u _)p
-I [u-_-x+v_ "e _-_

Finally, we have to re-express the two last terms

on the IlI--IS in terms of T e, T, u. Now, n e can be

obtained from the Saha relation.
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nene(2"mekTe)3'2n - Z exp - = S (T e)
s h

The ratio of the original number density of seed

atoms as compared to the inert carrier will be

specified. So

.ne + n s

n
/%

Also, assuming each species is a P.G.

P =_Pi = k [nA+ns+n e] T + kneT e

_ r p _ kn A T

No'w, we write from Saha

neZ = S(Te)n s

But from the definition, of P

= Pn -n
ns I% e

neZ = S(Te ) [P k-_T " ne]

z Pps
or ne + S(Te)ne " kT = 0

S + + PpS
and n e = - _ "4- kT

S {_I + 4PP- I } when 4PP > i0 "zor ne = _ kTS kTS-

when S is very large, corresponding to nearly full

ionization, the above may prove very inaccurate

for numerical calctllation. For this case, we ex-

pand the _/_ and use

me = _ [1-_S] when _ < 10 _z

If _e wish, we can also write

3/Z -CZ/Te

S(Te) = CITe e

where

Z _ mekT e _3/ZCI= --
h z /

C z = eI/k
bn

Thus we can write out to beginwith _ using
bx

n = - + +e

and S(T e) directly above.

Now

e
--=S
Bx

_T

_S z bhI bx +s3 dPdx

where

S l c2)[l=S 3 + _--5- 7
T e

S ZPp ]

7+_

_"V _ kTS

SZ = /ZPP
T z 4P_KZkC %/I +

P V kTS

$3_

ZP

/
kT %ll +

v kTS

Similarly

bn _T

e e bh (_y) -V:Sl sz :o

Accordingly, neglecting argon ionization the over-

all energy equation becomes

du
_h bh ®

pu _ + pv by p®u_, u dx

u 5Te bh dp+ jyEy" - I Sl -_x - USz _x + uS3 dK

e _ vS Z _ ne + ___+vsl _y _ _x _y ]J

(/%5)

but the last two terms can be rewritten as follows:

/%ssume the overall plasma density, pressure, et al,

is that of a perfect gas (argon). Then

C

p =DRT =P_'_ h D="'_R Ph

P

Then

c 1 _h lCpli __e=_!_ap__+_ -
p bx p R h z b x p R h dx

l_h ldp
h bx p dx

u _o + Z _-_=_ u bh v bh + u dp
p bx p by h _x h _y p dx

The overall energy equation is then

AZ



du 2

5h _h _ (_
Du _----+ pv = - 0 u u +ox _ _ _ _ _y,

< _T 5kT e y_+_y _Kt + " + +j E

bT 8h dpe . uS Z + uS 3- I USl bx _x _x

_T

e _ vS 2 _h (u dp
+ vSI _ y _y - ne p dx

h _x h _y
J

du

But we know dPdx to be : jyB z - O:ou=o _dx Then

we obtain Eq. (5).
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APPENDIX B

Consider Eq. (4) specialized to an electrode wall.

as before

bn _T

e S e _S 2 bh dp5----x-= 1 5x _-xx + S3 dx

Then we have,

(B1)

6n _T
e e _h

-- = S I - S 2_y By _y

5u _v

Also we have to reexpress _x + q--" Thus
oy

(P_)+ 7yy (pv)--°

and

p _-_+ +u +v _-_y:0

_x+_y =-0 _x-P_-_ :ptu-G-x +v-77J

dn
and we as well replace .:x_ from before

dx

du

dp =j B -Ou _o

dx y_ z o_ _o dx

Making all of the above substitutions into Eq. (4)

yields Eq. (6).

(B2)

(B3)

(B4)

(B5)
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Appendix C

Eq. 's (9) and (i0) can be written as

a I (I+/_ fl.)E -/3e(Ey-uBz) }Jx = Z el x

e t e

JY= = (I+_ _}2+_ 2 (l+_e/gi) (Ey-UBz)

el e

using the 2nd relation to replace (E -UBz) in Ist
"

we get

Jx = l+_e_8_ Ex _ea "

and

c; Z

JxE× : ,+/3_------7Ex
e i _o

e

I+ ft. Jy Ex
e t

L-.o
• = 0 where E _0
J y_ x

E = 0 where j _ 0
x y=,m

So

a z

JxEx - l+fl,8. Ex
e l oo

Next, solve the Znd of the above eq's. for E ,
Y

E : - xy c; (1+ _ E _+ uB

Then

JY_ (l+_e_[)Z + e

E = +uB j
Jy y -6"- 1+;_ _ _ y_

e

Now, we need an expression for Je and Je
we obtain from x y

This

j =j+_._
_e _ l B

z

Then

Je
x

8.
1. .

= Jx - _ B zJy
Z

= Jx - _Jy

i e

Y

_B z

= Jy + _ Jx = Jy
Z

+ Jx

also as before

5o that

=Jy=[ ] +

or

Je • +_ E= alJy_ Z x
Y

then

E Je = E Jx - _i Jy_

X X " Xco
c_ X

0

E
x

_o

or

and

then

c; 2

]_ e x
e=i co

X

[ (l+_e{3t)2 + _e 2 ]

(E - uB) j = )2
y e _e_iy a (l+

e 2
_E

[ X

J
e

x

E + j (E - uB )
x e y z

y

.2

2
E

x
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A PPENDIX D

Momentum eq. :

All fm+l, n+l

where

f' + B
+ BII m+l,n 12 gm+l,n

va_A _
11 8_ f'A_7

BI2 =

4_ f'(A_ 7 )2 8_ f'

2u

du

+

d_ 2_ f,(Ar/)2

an

at

2u f' d_

C
11

v_ _ { a_ + _'a$

8_f'A_ 4_ f,(A_)2 8_ f'(_r))

D
1 f (1 du.)m, n 2u d_ 4_ f'

+ _ f, + _'(a_) r
45f' 17N 4_f' _7

+C

f' +

f' = D 1ii m+l,n- 1

du

2u® f d$ gm, n

D1



Overall Energy Equation

f' + + 8 + f'
AZ1 m+l,n+l A2Z gm+l,n+l A23 m+l,n+l BZ1 m+l,n

+ + C f' +
+ B2Z gm+l,n B23 8m+l ,n 21 m+l,n-I CZZ gm+l,n-I

+ C23 @ m+l,n-I = D2

where

_-___
A21 - 25 f'

A -
z2 8_f'_

AZ3 - 8_f'AN

2
u £ f'
co n

C T 2A_7
p ®

• in V iozv
26 t '+ e

V - PR A17 - CpT pW 0_

I Te T e
2k =

_- kT

2(DD }rU_ C T e
p

IS1T e V

• +0_Z E x +_1 @®CT
_. p W

gm.n]

gmp n I

B21 = 0

B22 =

+

u du

CT
p ¢_

2

f' C T (pD)rp u

dT
1 w

(i -I S3) - T d_

E 2 .2a 3
x y_

+

l+¢e_ i (Y

(I+_ e_i)2+ 2
e

I+_e_ i

+
C T p u(P_)r p ® ®

(i-I $3) -

In,

e

CpTZ_ P ®

In jy Be z lu n du

m

p(D_)ZD C T u pC T d_p ® _ p _

IS z

D= gin, n

(A E ) I Sz dT

d_ gm, n

dT
e

d_

+

dT

IsI(A¢) e

C T d_
P® p ®

0
m_n

In
e

T
Cp 0 w Z_.f'(An) z PR

D-2



BZ3 =

ISIT e== V nl-- gin,
0 =CpT®

_ij +_zEx )Oe- ( V. . '

D3



5
+--

2 (p/_) u C T e
r 00 p 0o

IS V
2

Ooo gm, n g_

'' + E x )0(o_ jy_ a' z _,

InV HIe g

CpT®D oo

IS T V
1 e

m,n p®C T
p =

+

IS T
1 e

00

g
in, n

0
m, n

I S 2 Z I n e

O= gm, n C T p gm, n
p 0o oD

t"lectron Energy Equation

A fl
31 "n-r_ 1,n+l

4

' A32 gm41,n41

B 3 0B3Z gm+l,n 3 m41,n

IA @ 4B f'
33 m+l, n+l 31 m+l,n

+ f' + C
C31 m_l,n-1 32 gm+l,n-l

+ C33 @m41,n-i = D 3

where

A =0
31

A32 = g

A
33 3 (3= _ kn _ kTe _ e

O0

2 Tu X
(P_)rCpp = ® e

00

4_ g (A r/)2

5k O u Tw e
W

Beg _ A_

[3B31 = -_kn + kTe 2 e

-n _kT O+Ie e
O0

1
(og) r

( 3 I) $2C T- _kT e+
eoo P

.J
2

(DP)r T u V

] ° o) °o + i s I s_ A_

2

Cpp u T k'(P_)r = e=

S_gan

S_(An)

" +cx E )
a 1 Jy® • Z x® .

Z dT

) ] (p.)rU e®0+.I S 1 Z d----_O

2
u dp)r = 1 =

2 P d_
O0

mpn
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(3 )-S 2 _kT e+i
e

dT

C g
p d_ m,n

B
32

3 3
--_kT S (OP) O=ue 3 r

du

d_

3

+-_kT S " B
e_ 3 u Jy,_ z

%(7 e
• _

, g

(3kT- $2 e

kTe
2

(0_)rU® C
O+l 2 p

IS du
3 3

0m, n " --_-- (P_)r O_u_ d_

IS 3u
• B

2 Jy,,, z

S2CpT 2 _ m,n0+ I (O_)rU ® A_

dT

f!

d_ m,n

12

3 e
S

- 2 mn kTe e _ m
S S

2
(p_)T u f,

e _ kT O+ I S
e 1 A_

2

[3 (3 .i(o )u+ _kne + _ kTe @+I S 1 2r

dT
e

f'
d_ m,n

3 3 du

-- k T S (pit)r p u f'
4 e 3 _ d_ m, n

2

rCpp u T k tO_u T(DD) _ _ e m e
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Abstract

The present paper studies the boundary layer

in a plasma in which the electron and heavy par-

ticle temperatures can be different. The formula-

tion is from the poin t of view of multifluid magne-

tohydrodynamics but differs from earlier treat-

ments in that the complete electron energy equa-

tion is retained. This requires a boundary condi-

tion on electron temperature at the wall, which is

obtained by considering the sheath. A steady,

laminar, two-dimensional boundary layer is

assumed in which the electron density can be pre-

dicted by the Saha equation evaluated at the local

electron temperature. The equations for flow

velocity, gas, and electron temperature are re-

duced to ordinary differential equations by assum-

ing local similarity and are integrated simultan-

eously. Soiutions obtained along an insulator wall

show electron temperature distributions that differ

significantly from the overall gas temperature

even when the free stream is in equilibrium.

I. Introduction

Several attempts have been made to analyze

the magnetohydrodynamic boundary layer occur-

ring in the internal flow of a compressible plasma,

in order to determine skin friction, heat transfer,

and potential differences between wall and external

stream for both electrode and insulator surfaces.

The first such attempt was by Nerrebroek l, 2 He

considered the equilibrium electrode boundary

layer in a rnagnetohydrodynamic accelerator hav-

ing constant external static temperature and cooled

electrodes. He argued that in the immediate

vicinity of the electrode the conductivity would be

low because of the cooling. This would lead to

considerable Joule heating of the gas near the wall

resulting in large temperature gradients and high

heat transfer rates. Kerrebrock's calculations

bore out these expectations. It was felt that these

*Consultant to General Electric Company Space

Sciences Laboratory

results were not realistic because the electrons

would not be in equilibrium with the heavy species.

Accordingly, Oates 3 made a rough estimate of

boundary layer behavior considering the electrons

to be at an elevated temperature. He found that the

increased conductivity near the wall over that found

on the basis of equilibrium theory greatly reduced

the Joule heating. He found that transport of

enthalpy to the wails by electrons was enhanced

because of the increased electron temperature. He

further pointed out that when the electron transport

of enthalpy is significant, there is a considerably

larger heat flux to the anode than to the cathode. In

Oates' analysis, the electron temperature was

determined on the basis of a simple energy balance

rather than the complete electron energy equation,

and as a result no "sheath" analysis was carried out.

In the above described analyses the Hall effect,

ion slip, and electron pressure gradient effects,

were neglected in the Ohm's Law. Finally, the

solutions were obtained by the approximate method

of local similarity, and did not allow for such things

as finite segmentation of the electrodes.

For the insulator boundary layer an analysis

has been carried out by Hale 2 who also used the

assumption of local similarity, but did include the

Hall effect. Hale, however, considered the non-

equilibrium effect by assuming a conductivity re-

lationship _ =(Y {j} rather than by accounting for the

behavior of electron temperature. This again obvi-

ated the need for an examination of the "sheath".

Nonetheless, this study did demonstrate the possi-

bility of enhanced heat flux due to nonequilibrium

ionization, as well as temperature and velocity

overshoots.

The present study has as its objective a more

refined treatment of the nonequilibrium boundary

layer development through the use of multifluid

magnetohydrodynamics. A set of conservation

equations is written for each constituent of the

working fluid. These equations are in turn reduced

and combined to achieve a usable set of equations

for a two temperature plasma - one where the

E1



electrons may be at a temperature that is signifi-

cantly different from that of the heavy particles.

The formulation is somewhat like those of the two

tem_oerature treatments of Camac and Kemp 4 and

Dix _ except that their problems were generally

nonflowing and noncurrent carrying, whereas

Joule heating and Lorentz forces are essential fea-

tures of generators and accelerators.

In its more general form the present formula-

lion is applicable to both electrode and insulator

walls of both accelerators and generators. The

present paper is more specifically concerned with

nonequilibrium boundary layer development on the

channel walls that contain the electrode segments.

These walls are made up of an electric insulator

upstream of the first electrode segment and have

insulator segments between subsequent electrode

segments. The calculations presented and dis-

cussed in the present paper are for the insulator

upstream of the first electrode segment and ahead

of the region of the applied magnetic field. These

provide initial boundary layer profiles for a later

study of boundary layer development over the finite

electrode and insulator segments. However it is

readily evident that these results apply to the non-

equilibrium boundary layer development over any

electrically insulated surface in the absence of

magnetic field.

II. Analysis

The formulation of our problem will be for a

two temperature plasma under the following

simplifying assumptions:

1.

2.

3.

4.

(carrier

5.

equation
6.

7.

8.

9.

wall.

Steady flow _ = 0
Laminar flow

No induced magnetic fields R m_- 0

Plasma consists only of electrons, atoms

and seed), and singly ionized seed ions

Plasma composition determined by Saha

evaluated at the electron temperature

No continuum radiation losses

Collision free plasma sheath

Only thermionic emission

Neglect pressure differences normal to

The geometry of the wall along which the

boundary layer will develop is shown in Figure 1.

The basic equations are developed below in

boundary layer form.

Mass Conservation:

5 5

(0u)+ _ (0v)= 0ax

Momentutn Conservation:

(l)

Ou _u

ou 7-2+ ovn;

a (as)= - ax -_y _-_-V + jyBz

Overall Energy Conservation:

du_ 2

pu _h+ pv ah _ (_Ul'_

+-_- Ki -VV + --SV-e Jey

m

(z)

5T

e uS 2 5hE + j E - I uS 1 5x _x+ix x y y

du 5T
e

+ uS3JyBz - uS3P_u°_ _ + vS1 -_Y

- vSz_y - n e_ P 3yBz - _ P_u_"d-X--

uah vah)] (3)h _x h _y

The details of the development of the above

equation are presented in Appendix A, where the

Saha relation has been used at the electron tem-

perature to calculate the electron density.

Electron Energy Conservation:

5T 5T

3 kune e 3 e-_x +-2 kvne _Y

+ _ kTe + I u S I 5x - S2_x

duo.u  ,f
(.+ _akTe + I v Sl ay - s2

+ ne [5kTe + I] lPu55-_x 1+

a ( aTe 5 k TeJey )-ay Ke- 7-y

=Ex,e +(Ey'UB)Jez
x Y

+ 3 p k (T- Te)_s yes
e m s

(4)

The details of the development of Eq. (4) are

given in Appendix B.

To complete the formulation of our problem,

we must conserve current and satisfy Maxwell's

equations. Thus,

E2



Current Conservation:

v ] = 0 (5)

Electric Field Relation:

v × E = 0 (6)

Finally, the individual species momentum is

conserved by satisfying a generalized Ohm's law.

Generalized Ohm's Law:

(y
J = x

x (l+_e_i)Z + ]3e z

"(l+Be_i)E -_ (E -uB )] (7)
x y z

q

J : 2 x

Y (1+/3 fli) z + /_
e e

2(1+/_1 _.) (E - UBz) + /_eEx j (8)
e t y

where the electron inertia and electron pressure

gradients have been neglected.

Next, we observe that if we try to satisfy

(Eq's. (5) and (6) explicitly we have for the two-

dimensional problem the following relations:

_Jx 5 j
+ ____Z = 0 (5a)

5x 5y

and

%E %E

x _ y (6a)
_y 5x

along with Eq's. (7) and (8). Now, even if we as-

sumed the flow field, gas conditions, and electron

temperature known, the above four equations lead

to a nonlinear "elliptic" partial differential

equation for the current stream function. If this

equation must then be solved as part of the sys-

tem, one cannot solve a boundary layer problem

which is "parabolic" in character. Furthermore,

the effects of finite electrical resistivity of the

plasma are such that the significant variations in

current density and electric field are not restric-

ted to a narrow layer in the neighborhood of the

wall.

Accordingly, since we still wish to treat a

boundary layer type of problem we must abandon

hope of satisfying (f ) and (6) exactly and look

for a procedure v. hcreby :._:>" can be satisfied

approximately. Such a procedure is available if

we assume that the boundary layer thickness is

small compared to the electrode or insulator seg-

ment lengths on the electrode wall.

In the analysis of the inviscid problem 6, one obtains

j (x) along the electrode and E (x) along the insula-

tor. The boundary layer problem can then be

handled by making the following assumptions:

1. Over an electrode segment jy = jy_(X), Ex=
0 for all y's.

= o, E --
2. Over an insulator segment jy x

Ex_(X ) for all y's.

With these assumptions Eq's. (5a) and (6a) are

satisfied approximately and one must then only sat-

isfy the Ohm's la,x at every point within the boundary

layer.

Working with Eq's. (7) and (8) we can obtain

expressions for j E , j. E,,, Je-.' and Je as is
X _ . ek

shown in Appendix Cx. _ubstltutmg theseVtnto Eq's.

(3) and (4) yield the following results.

Overall Energy Conservation:

_h 5h (d_) (SX__y)ZpuT-£+pv_y :- 0=% u+_

+ -- _ K i -- + • a 2 Ex=oy by _ _IJY_ +

q 2

+ E
1+_ _ xe

+ UBzjy,_ - I

+ uS.j B
_y_, z

7"--- - n j B
vSz o y e y= z

vh_x

Electron Energy Conservation:

2[ 2 2]+ --8- l+ #e_i

uS BTe - uS _ h5x 2 5x

du bT

uS 3p= : + vS 1 e- u dx _ y

du
U

pO_U dx

(9)

)3 kun e 3
e--_-7+-_kvne _y + kTe + I x

I : duIe __hh . =

u S 1 _----_ - SZ bx + S3Jy z - S3P_u_ dx

+ kT +I v S-=---_e-szg-_--ye loy

+ n -_ kT + I pu-- + pv
e e 9x

- + _2ExKe _+[_Te _lJy=

Z

(l+_.ai)z
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q 2
+ 2 E

p
e

s+ 3menek (T-Te) ms

Boundary Conditions:

To complete the formulation, we must specify

boundary conditions. At the outer edge of the

boundary layer we have from the results of channel

flo_ calculations

u(_): u= (×)
p(_) = p_ (x)

T(_:) = T (x)

T (_) : T ix)
e e,_

Along the wall we have

u(0) = v(0) = 0

T(0) = Tw(X } or q(0) = qw(X)

To establish the inner boundary condition on the

electron temperature T , we must consider the
e

nature of the plasma sheath. The sheath will be

considered collision-free and free of magnetic ef-

fects. The validity of such a treatment depends on

the Debye length being much smaller than both the

electron cyclotron radius and the electron mean

free path. Such conditions obtain in the external

channel flow but it is not clear that the desired

length ordering is appropriate at the wall. In fact,

it can be shown that if in the external stream the

electron gyro radius is say ten times the Debye

length, then just a 25% reduction in electron tem-

perature will equalize the two lengths. Such a

reduction may well occur in the boundary layer.

Nevertheless, let us now consider the ideal sheath.

Consider the surface at y = 0 (Fig. g). The

net current density in the positive y direction is that

due to electron arrival at the wall minus the sum

of the current densities due to ion arrival at the

wall and electron emission from the wall 4. For

the present problem where the only ions present

are seed ions, the net current density normal to

the wall can be expressed as

e At0

n e <V > kT
e e ew

(Jy)w = 4 e - nieVi - iw (11)

where n e, n i refer to the number densities at the

edge of the sheath {n e = n i for singly ionized ions),
_xhere

8kT e<V > = w

e ffm
e

kT eVi > w
- m i

T e being the electron temperature at the sheath
W . •

edge, and where the emlsston current density i is

dependent on the surface temperature and work w

function of the surface. This gives one relation be-

tween the electron temperature at the sheath edge

Tew and the sheath drop, A'0.*

A second relation is obtained from continuity of

electron energy flux at the sheath interface between

continuum and molecular descriptions 4. Thus,

_ Te 5 -Y- kT

KeV -v/w.__+ 7 e w

n <V >
e e

+ elA _°l) 4 e

where g is the average energy of a thermionically

emitted electron as it crosses the sheath interface.

Between the two relations (11) and (IZ) we have the

sheath drop A,o and the mixed inner boundary con-

ditlon on T .
e

Coordinate Transformation:

= (2KT
e

w
e_O

kTo
_w -i 5_ (IZ)

w e

The boundary layer equations so far presented

are a set of nonlinear partial differential equations

dependent on two space variables. It has been com-

mon at this point to seek a similarity transformation

that would reduce the dependence to just one inde-

pendent variable. Such a transformation has in

fact been carried out. While complete similarity

is not attainable, by suitable approximations a form

of local similarity (the longitudinal distance appears

as a parameter but not in differentiations) can be

obtained. While clearly inadequate for the regions

of finite segmentation, the local similarity proce-

dure allows solution of the boundary layer equations

from a stagnation point or from a leading edge up to

the region of segmentation. The solution may then

be continued by a finite difference procedure in the

plane of the transformed variables with the longi-

tudinal ste D size determined by electrode length

and spacing.

The new independent variables are those of the

Levy-Lees transformation.

x

g (x) = I (P ¢)r u dx

O

= U In (x, y) _ p dy

*The anode sheath drop is slightly less than the dif-

ference between plasma and floating potentials

while the cathode sheath drop exceeds the afore-

mentioned potential difference.
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so that

_ =(p_)r u -_--_-+ _ _--_
ax

- a_.
By

and where

Equations ((I), (g), (9), and (I0)) become

ContLnutty:

a f' 5 V f' 0 (13)

Z_ -_- + -_- + :
04)

Momentum:

+ v-c_- =7- <_--cr-g-vz_+_ \ _/

Energy: dh

z_ du u2_ Av\ z

v Z'--[- kTe2 1Jy: Bit
5 _

+ 7 (p_)r%Cjr e an

kT _'2E% x_ a O
5

+ _ (P _)r u CpT e an

5 _ kTe_ '1JY_
O

+ _ (p_)rU CpT== e

kT _ 'ZE
e x

5 - @

+ _ (P_) rue= CpT= e
Z

2 _ i x_

+ Cp _ _)r_>U= i

jz z z ]+ -7- l-----+l__. g
e l

f,
Z _B zJy:_ g

(1 -_s 3)
+ (p_)rCpT==D== u

is T (z[) :sm v
1 e a0I e a0

CpT _%

dT
e

Isi(zg)_ gVO
" pC T

ISz(Z_) _ + ISzV
+ p---7--g_'a_ _ g a,

+_ \-_7-/g -cT. a¢p _

In ine(Z _) dT

_ c__y_ff_ v - ----y--__---(- f'g
T i%p _ Cp.

In j (Z_) B

ey® z
gf'

IU n (Z_) du

pCpT. d _ gf'

Electron Energy:

e

kn e + kT e @ + I S Z
c_

-]f'8 e=

+V_r_ e

_F:_ ]+v _-_-+ z4 a---U
ar_ =

05)

- kT O + S3P_u_ d--'_-(Pll)r f'

e

kTe o + S3Jy B u_f'

Z

p u C (p ll) T
=, p r e

zeg

a_
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p u

gj-_

5 k . b

2 _-'Te 3y_ "_- (Oa 1)

_u
_ 5

-- 2
gj2_

k 8
T E (8

e e x 8 r/ _2"
)

co ,x_

5
+ n kT

e 2 e

,v _ z_[t/ %[ I 2 c;

.2

+

a (i+fl¢.)2
e i

+ 3m n kT _ _ s
e e eo_ T

e s m s

(16)

Nonequilibrium Boundary Layer Development Over
Initial Insulator:

Upstream of any electrode segment, Eq's. (13)

to (16) are simplified by assuming local similarity.

That is, we take _ = 0 and treat _ as a parameter.

In the absence of currents, magnetic, and elec-

tric fields. Eq's. (13) to (16) become

Momentum:

(£ f")' + ff" = 0 (17)

Overall Energy:

2 T
u e

+ fg'+ i-- [_ + _ (xe'),
cm co

I/.sIT%
fgO' -

Szfgg'

n )e

p_ CpT fg = 0

Electron Energy:

3 kn e +(_ kTe_8 +

()_@')' + . fg
0o_Cp

-
fgg'

(18)

[5 ,][+ e+I
_'-_-- fg' - _0 _)r u z x

p e_

p Cp/

d
where ( )' :

dr]

Boundary Conditions:

77=_ f' = g =8 = I

_= 0 f = f' = 0, g = gw'

_-m n /kT
2 c e w e_,

8' - Vw 5 kfi0_) u m
r _ s

x 2 + £n V _--_ee /@ w

The viscosity-temperature relation is assumed

to be such that £ = g-I/4 and Fay'a 7 approximate

mixing rule is used to evaluate the electron ther-

mal conductivity parameter.

>'- c Co_,----_-- _ (zo)
p r

where

K e Ks,gtA*

/___) Ks Qen line TKA* 1_,/_ K-A* Qnn m c T e

K
s

n
e

ge =_
n

5/Z
T

7. 5 x 10 -7 e

T3/4

_Zn[55+Al +A ]

1.24 x 107T 3/2
e

A .-
I 1/2

n
e

1.8 x 105T

A2 = 1/3 e
n
e

Eq's. (17) to (19) are three coupled nonlinear

ordinary differential equations that have to be

solved simultan_'ously while satisfying two-point

boundary conditions. Such calculations have been

carried out on a high speed digital cr,,_-,,ter.
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III. Example and Discussions

The nonequilibrium boundary layer develop-

ment over an initial insulator has been carried out

for argon gas (inert) seeded with i% by volume of

cesium. The free stream conditions selected are

us = 395.6 m/sec

T,_ = T e = 19Z0°K

p_ I. _4 atmospheres

M = 0.5

The Prandtl number of the mixture is assumed to

be 2/3.

Calculations are presented for values of _ be-

tween 0 and 0.01. This would correspond to a

maximum distance of one meter from the leading

edge of a flat plate having the above uniform free

stream conditions and (PD)r = 4. 5 x 10-5 kg 2
----4

The results are tabulated in Table I. m - sec

Table I

w_" gw f"w gw O

0 0. 9 .4598

• 005 0. 9 .4596

• 010 0.6 .4257

•010 0. 8 .4498

•010 0. 9 .4596

•010 1.0 .4689

010 l. 2 .4847

0655 I. 0000

0656 . 7791

1709 •7194

I030 .7553

O657 .7745

0261 .7940

0574 .8384

Typical profiles obtained at _ = ,01 and

gw = 0. 9 are shown in Figs. (3), (4), and (5). t

Here we observe that the velocity and overall gas

temperature profiles are relatively unaffected by

the electron temperature variation. Significantly,

however, we find that the electron temperature dif-

fers considerably from the heavy particle tempera-

ture. This occurs in spite of the fact that the

electrons are in equilibrium in the free stream•

There are several causes for the difference

between T e and T. Most important is the fact that

the sheath boundary condition for an insulated wall

requires a large _@_. Then T e must be low at the

wal%_o allow Te _ T at infinity. Such a large value

for _ is necessary in order for the continuum

heat f{ux to equal the microscopic electron heat

flux at the sheath interface. The other cause for

differing T e and T arises due to the flow and over-

all gas temperature gradients and their contribu-

tion to the electron energy equation.

One consequence of the lowered T is that the
e

electron density and electrical conductivity are

lowered near the wall. These are shown in Fig. (6).

"¢ Changes in 0w in the sixth and seventh places were

found to be necessary in order to obtain accurate

profiles.

# The profiles all approached one at infinity to with-

in an accuracy of better than one part in a thousand.

To illustrate the longitudinal development of

the boundary layer, calculations have been made

at several values of _. Curves showing f", g', and

@ at the wall are shown in Fig. {7). Most notice-

ably, we see that aside from a rapid drop of @

near _ = 0 that all three unknowns vary rather

slowly in the coordinate system chosen•

The influence of gw on the profiles is shou. n

in Figs. (g) and (9_. Interestingly, we find that

increasing gw increases e w. In fact at gw = 1.2

we find O reaches a maximum of 1. 016 at r7 _- 2

before returning to unity at _. This establishes

the fact that the variations in g and f throughout

the boundary layer can even cause T e to rise above
its free stream value.

The total heat transfer to the wall may be

evaluated using the continuum description developed

in formulating Eq. (3). In general, it will consist

of the sum of the conduction terms for each species,

and the flux of the particles to the wall carrying

their enthalpy (both due to random thermal motion

and recombination energy). The Iatter wiIl con-

kT
5 e .

stst primarily of _ _ 3ey which represents the

flux of electrons carrying their thermal energy,

and niV _ I which represents the flux of ions

carrying their recombinationenergy. For the

calculations presented over an insulator wall, we

have no current, Je = j = 0. As well, we have

n_neglected i I in Eq. (3) since for the con-

ditions being considered it amounts to less than 1%

of the heavy particle conduction. The electronic

heat conduction has been included, however, in the

analysis; but a check shows that it is no more than

Z% of the heavy particle conduction. Singe the g

distribution seems little affected by the electron

temperature we must conclude that the heat flux

seems unaffected by the variations in the electron

temperature found here.

IV. Summary

In the present paper we have developed a

general procedure for estimating boundary layer

development for a nonequilibrium plasma. An im-

portant feature of the method is the separate

treatment of the electron energy equation subject

to electric and thermal boundary conditions ob-

tained through a description of the sheath.

Calculations made assuming local similarity

have been presented for an insulator wall that

shows that the electron temperature is much dif-

ferent from the gas temperature even though the

plasma is in equilibrium in the free stream. Also,

the velocity and overall gas temperature profiles

are little influenced by the electron temperature,

although small changes in the former cause large

P.7



changes in the latter. Specifically, small changes

in the wall temperature are shown to change the

electron temperature considerably.
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Appendix A

Ove rail Energy Conse rvation:

bh* bh* _p + /_u_ 2 )

+ JxEx + jy (Ey - uB) (AI)

The heat flux vector is assumed to be of the fol-

lowing form.

q = _ q. where q. = -K ivTi + pih_ V.

Now, let us express h* more explicitly.

1 5 kTi Ii

h* =p _Pi_ h*- 2 m + m
i i

so that

or

PA 5 kT Ps 5 kT Ps + 5 kT
h* - + +

2 m A p 2m p 2 mP
8 S

Pe 5 kTe Ps + I
+ +

P 2 m p m
e fl

n

h* =h+ -_e I
P

We can rewrite the heat flux vector for s as follows

2
m n

qi = -KiVTi + m.n.h.V. + i__i it !i
l t t_t p

so that

5 kT

-- --....._e le= -i_Ki vT + me ne Z m
e

5 kT

: -El( VT e Je
i i 2e

Then, the overall energy equation becomes

pu _+pv _=u _x

/i _ _ T 5 kT e )Ki -TVy+ --f-J Je
Y

+ JxEx + jy (Ey- uB)

-pui pvi D
(A2)

Next, let us write

puI _x + pvI _y = I u _x

e _p+v _p
+v- Tf-ne ; by

and the energy equation can be rewritten as

puw_x + pv--_-y =U_x

• )( _T 5 kT e Jey+ _y _K "_y+_ + JxExi i

bn 5 n e+' -I u-_- eJy (Ey-UB) _^ + v --By

"I

/u ap , z _--P-_[

and the last two terms are equivalent to the
ions

U_iI. term commonly included in the energy
equlation.

aP
Next _ can be obtained from the momentum

equation evaluated at the free stream. Then

pu'_=+pv_ =-ax + _Tyy

and at =

du

_P + jyBp u d"-x": - ax z

du

• • _x = jyBz-_U_

+ jyB

and the energy equation becomes

_h _h du [_u_2

pu _ +pv_-- : -p u®u _ + _by/

+-_-y Ki "_"y + "-"_e J e +JxZx +'

('

v
Finally, we have to re-express the two last terms

on the RHS in terms of T e, T, u. Now, n e can be
obtained from the Saha relation.
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( )31 [<]nen e 2"_ mekT e eI

n = 2" exp - = S (Te)
s h

The ratio of the original number density of seed

atoms as compared to the inert carrier will be

specified. So

-ne + n s
p-

n
A

Also, assuming each species is a P.G.

P =_Pi = k [nA+ns+ne] T + kn T
e e

o r p _ kn A T

Now, we write from Saha

neZ = S(Te)n s

But from the definition of P

n : Pn -n
s A e

g PpS
or n + = 0

e S(Te)ne kT

S + + PpS
and n e = - -_ --_ kT

or ne : -Z I + kT$ kTS--

when S is very large, corresponding to nearly full

ionization, the above may prove very inaccurate

for numerical calculation. For this case, we ex-

pand the j_ and use

If we wish, we can also write

3/2 -C2/Te

S(T e) = CIT e e

_here

{Z Tt mekT )3/ZCI : -- e

%, h 2

C 2 : el/k

bn

Thus we can write out to begin with __e using
8x

S lapS

n :--- + + k_e g

and S(Te) directly above.

N ow

bn

e

"_x =Sl

bT

e $2 bh dpbx _ + S3 dx

where

S 1 c2)[=S 3 +

T e

S ZPp ]

!+ _ + k--__

i 4!ap
2 S 1 + kT-"-_

S : 2Pp

2 T2_/kC I +
p kTS

S 3 =

21=

kT ¢I + 41=pkTS

Similarly

bn bT

e bh =o)by = SI by _y by

Accordingly, neglecting argon ionization the over-

all energy equation becomes

du
bh bh

PU _x-x + P v _y = - <u=' u d---'x

+ g' t_y] _K. _y + _ Je JxEx

bT Bh dp
+ " S e _ uS 2 + uS 3]yEy - I _ _x dx

bT bh (p bp v _Y]bP)]_ vS 2 - n e ++VSl by _ 7x

(A5)

but the last two terms can be rewritten as follows:

Assume the overall plasma density, pressure, et al,

is that of a perfect gas (argon), Then

c

p =DRT =D_ -_ h O =-'_ pR h
P

Then

C C

i b__0_0= i __j_ p I bh i __p_ I dp

bx - D R h z 5x + p R h dx

1 bh + 1 dp= - -- _

h bx p dx

u _30 v b,O u bh v bh u dD
.... + r.. -- _ + --

p bx p by h bx h by p dx

The overall energy equation is then

_9



Du .--- +pv =- 0 +

_ ( bT 5kT 1_K + e Je +" +j E+ _-yy i [ _-y _ JxEx y y
Y

bTe bh dp- l USl _ - uS2 _x + uS3 dx

bT

e vS Z bh (u dp+ VSl b---y- - _y - ne p dx

u bh v bh)] (A6)h _x h by

du
_m

But we know dp to be = j B - O u _. Then
dx y z _ == dx

we obtain Eq. (3).

Appendix B

General Form of Electron Energy Equation:

V " ne_ _kTe+I + V " -K VT
e e

5 k , I . ]

2 e Te!e - e_e] + Pe ? _v = E*_ "
le

+ 3 p k (T - T ) _u* /m (BI)
e e e s

S S

which we can rewrite as

+ pev " v = E* "_je + 3Pek(T - T ) EV /m_ e e s
S

I

+ - v "ie - I v. (n v) (B Z)e e_

In boundary layer form this can be simplified to

bT _n b T
3 e 3 e 3 e

-Z kune _ + _ kUTe _ + _ kvne by

3 kVTe e 5 bu bv+ _ _-y + n e -_kTe + I _x +

_T TeJey ]

e 5 k =":':
by = Jxe

X

12
e

+ (E -uB )j + 3Dk (T_T) E___ss
y z e e e m

y s

_n bn
e e

- I u _ - I v by (B3)

Now we have as before

_n bT
bh d_£

e - SZ _x + S3 dxbx = SI b x

bn bT
e e _h

SZby = SI by _y

bu bv

Also we have to reexpress _+ _y. Thus

b
(pu)+ :- (pv): o

b-x oy

and

p T_x+ +u +v _-£ :o
8y

bu bv __ao_v bp [ bO -l+ bp -1]:-pT; v- C j

Hn

and we as well replace -r from before
dx

du

do • eo

dx v z _0 _ dx

Making all of the above substitutions into Eq. (B3)

yields Eq. (4).

Appendix C

Eq's. (7) and (8) can be written as

Jx (I+# _.)Z+ _ 2 _ y
e l e

Jy_ = (l+_e_)Z+_eZ

using the 2nd relation to replace (Ey-UB z) in 1st

we get

o{ ' }Jx = l+_e_ [ Ex - me(yJYm"

and

#
(1 Z e

= _ j y®JxEx I+_ _. E Ex 1+ _. x
e ]. _ e ]. ¢o

L..o

" = 0 where E # 0

Jy® %

E = Owhere jy # 0x

El0



So

(; 2

JxEx- i+/3-ff7.Ex
e t _o

Next, solve the Znd of the above eq's. for E
Y

J Y_[ (l+fle_l)Z +fl:l fie
E =
y q (I+8 _) - _ Ex + uB

e I e i

Then

.2

Jy= [ (l+fle_l)Z +;_Z ]E = e
Jy y -_ I+_ #. + uB jz ye L

Now, we need an expression for j and j This
e e

_e obtain from x y

& + B
Z

Then

J
e

x

J
e

Y

8.

Bzjy - _lJy= Jx - _ = Jx
z

,8. B

= jy+ B--------_z jx = jy+_ijx
Z

also as before

(7
=

Jx 1+/3 ;3.
e 1

So that

[ ]
E - ] Y_x 5-

Je = [ - +y Jr= l+ ee i lme i

or

Je = _lJy_ + uZ Ex
y

then

E j =E j
x e x x

or

E Jex = 1+/3 _-------7
:_ x e t

x

0

E Z
x

z_

and

E
Z

then

I.

2.

3.

4.

5,

6.

7.

(E - uB) j
y e

Y

e

2
(l+fl ft.)

e t

[ (,+ eQ2 + ]
7.

2
'a_.E

x

.2

Jr_

_ie E + -Je (E -uB )x y z
x m y

.2

= - - ---- -- + E

(1+/3 /3.) Z e (1+/3 ft.)2 x
e t e r
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(b) current denstty due to electron arrtval at

outer edge of sheath
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4

(c) current density due to ions entering sheath

(all these tons reach the wall since they are ac-

celerated by the sheath drop)

n eV
i i

(d) electron emission current density i
W

(e) net current density jy

Figure Z. Contributions to Current

Density at Wall
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APPENDIX F

The flow diagram and listing included here are for the computer

program written to carry out the calculation of the initial profile. A

fourth order Runge-Kutta method subroutine is employed to solve the

equations described in Sections II and III.

The following equivalence between major variable names employed

in the equations and in the program should be noted:

u (ll = f = - v

!

U (2) = f

tl

u (3) = f

U (4) = g

!

U (5) = g

u (6) = o

!

u (7) = O

_f(...) = function of (...)

ftf _ ff I

F (3) = f = _(f, f , g, g)

f! tl I f

F (5)= g = _"(f, f , g, g , {9, O)

F (7) 8" ' '= = @J(f, g, g , 8, 8 )
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XL.cF:

3 v_ ,;;

I.-,J
_,,

..A. = _,."(-,, 6)

._. = oy (;!.;:9)

r;K. E_._ -- "Y(,_K_,_ ..."

= PR.

F7



DER/V_

Ann D,_

N F_,_¢f: .Z.

p_ . e. S.4
"_, '_'e_ _" •

Eo_V£ 7 E'.S.
_o_ F(z)j

I : "_1 7

_t

_ET" u_,v

• The Runge-Kutta integration subroutine CALLS DERIV, which contains the

seven first-order non-linear differential equations for simultaneous solution.

F8



_t;_ ].... LILTS5-6/ .... MAiN PhlUL_NAM

i C MAI,_ MAIN PROI_RAM

2 COMMON /CCOMI/ PIZ,(.;P,ETE,UI.:,CM,I-M,1E,CI,C2,PER_PRNpEKS1;AK_),EC,--

,.i J.ul- AI_IAA, ROMR, HK, #RES, P I p 5M, EHOE

4 GUMMI_N-ICE:OM2"/ U(7),F(I) ,YAMI,YAMI_,YAMA,KFIRST ....

. _ . C UMM(JJW /CL;Or13/ ' _PSP, E lr Tc_T pSp ERE, N ] i.)L

o LUMMUN ICCOM41 TEMPMA,OEAT,IQEGST,NTdA

7 UIMF;_ION TE;'IPRA(_O ), QEAT { 50), _CST { _0 )

....._-.... b t M_-q_b I ON USV(7)' ATEMP(31_) ......

9 UIM=NSION UINT(/),UOLI2(7)

lJ _x T_;_AL. OERI V ......................

II '"AMI'LI5"[ IINP_, / U,OETA,ETAV,ETAFL,IEMPRA,QEAT,QECST,NTBA

I.Z ;_AMPLIST/ObTPUT/ YAMA,U,F,EIAVmL'ETA,YAM_,,YAM211TRY

1._ i h_-AU(b, INPUT)

]_ h,I |Me 1- 2
.l_ ._VAR = 1 3

lO PJ It I=l,7 4

_ .1/ ii UINI(1)=U(I} 5

l_ 2 YAMA=u . " ........... 7

IV ,NNI I L-:.( 6, I,_PUT ) 8

2U J'JlHL=U 9

_'i lX=d ......... 10
............ ° .............

;j C

/4 C I'INU LANDA I-OR TH_TA #RIME GAI,,CULATION

Z_ C

;:'7 U( /)=_.*SQRT(2.*EKSi}*(CM/ROMR/UEeSQRT(13K.E[E/SM)).(2t._B.ALOG(SM/ 13
.... F..... - ..............................

,':_ I(.;,*PI*E _) ) )*u(o)**l,_

_9 GALL r_KP_(DER I V, A [EMP,E] AV, gE rA,U,F,NV) 14
--_i .........._ ...........

,_i C clAV IS T_E ]N[)_P_-NCIE_T VARIABLE

•_ C U_IA 15 IHF [')ELIA ETA

Jo C u l_ lrlE DEPENDENT VAI,IIABLE ARRAY

J4 C F [_ IH_-L:JERIVAT[V__: ARRAY ......................................

.i_ C r-IAFL 15 THE FINAl. ETA

,so......(" .......................................

_ _7 .... _ _FIRSI=U 15
,_ c ..........

.i_ C .... _ I_H_._I.!_S A CONIROL. TO SAVE YAM1 INITIALLY IN D_RIV

4 L_ C ....

'*t t: I AH_ =[-: I'AV ].6

4_ L IKY=U

_ 4.,__._ UU IC IA=I,7

44 10 _bV( IA)=U{ [A)

46 I IMY=_TNY+I

_t 1t" (ilRY.LT,4) GO TO ],6

. 49 ...... Lh...IF (III_Y.EU,_) 6O TO ._0
bU C

)I ____ (_........ [_51 i-OR F IN_A_ E.TA
_J C

i7
18
19

_3
26
_.7

F9



_'...__1 ....E7.-_ZS_b7 .................. MAIN.P_QGRAM ........

b3 IF(_T_V.GE.ETAFL) Gg TQ_3 ..........
)4 IF(LTHY.E_.4) GO TO 5

_b CALL NKPR2
bO bO 1U lb

bO C H_-.CALCULATE LAMDA PR|ME

bU bO YAMA:{YAM_-YAMI)/DETA

_I _ .__ ..............
_d C Ne5_l VALUES TO PREVIOUS pOINT

o3 ..C...........................................
o4 EIAV=_TAPH
(_ ............ O.O_OU .|A=%_7 ..............................
(o oO U(LA)=USV(IA )

e7 bo I0 15

(e 3 IF (NVAR-d) i00_i01,IU2

_@ IUO IF tNIIME-2O) _.Q3,!Q3,!04
--3.............io-__-_3_ _6,io_)0

:2 GO Ib 1

74 101 k = (1.-U{2))/ABS(U(_)-I.)
'_ 1_ (N[IME GT,I) GO TO 108

z( U_LU = .02*A*UINI(3)

__/} .... uu JQ 109
'-- /c i_80:LO = .5.A.UIPT(3)*ABS(UOLD(2);U(2))/UOLD(2)

,_ IUg UXNI_(_) _E .U_IN_T(3)*t3E_U ..

_ OO I L=I,/

_i .... __uot-u k!_ ( 1 ) ....
O_ ? u(1) : LJINT(I)

_ ,__1_. ___N [!ME*L .....
_I _IAV = O.

)................ _o- ]_o__..................... ___
Oo IUI ,_VAN : 2
87 iF {NIIME-2D) $11)111_10 4

89 llo _ : (L.-U{4))IABS(U(4)-$,)

90 IF (NIIME,G[._) GO TO 115

_ 9..__ .................UFLU =. _.Ob,A*U.]NT(5! ..............
9i bO I0 1_6
?_ 119 bkLU = ,5,A*UINT(b)eABS(UO_D(4)=U(4))/UO_D(4)
9_ lib UINIt_) = UI,_T(5)*DELU
9'i ........bO 0!=I,7 ..............

..... } ;- " UOLD{|) = U(I)

9' ......8..9_1) = _!NT(1) .................................
9j ,wI IM_ : NTIME*I

9_ _IAv : O_ .
lU_ _O I0 2

_IU[ lt12 _VAH =3
LOt 1_ _._rIME-20) 112,112)104

.._i,J._......... Ii2 I_ £_us(U(.6)-_,I-,OVZ) _,$,113 ...
iUl 113 A = _U(b)-l.)IABS(t'{O)-i,)

33

37

38

39

4_.O---
41
(_...E_
44

46

48
49

50
__$_
54

5()
57

58
b9

60

O3
64
6b
eO
67
08

b?
72

73
74
75
76
77

78
BO

.Ul
_2

_t_,} _.
84

06

t;'10



lu_ IF {,_IIME.Gr,I) GO TO I%7

1'd6 U_LO -- .01*A*UI,_T{6)

it)/ UU I0 Ii_

Lud .......... i17 U_LU - ._tA*UINT(6)tABS{UOLO(6}-O(B))/UOLD(6)

_09 118 oA,_I(b) = ULkT(6)eD_LV

flu O0 _ I=i,/

.111 t_OLO( I } = U( I )

-i12 .............. 9 U_|) - UINT(1)

113 _I IM_ = NTIM_w'I

_,"_ ........... I:..IAV = ],

115 GO IU 2

87

90

9_

9,1

94

9_

_6

98

99

%UO

101

Fll



_lP09

1
2
3

4
5
6
7
8

9
10

07-17-67 BLOCK P_OSRAM

RLOCK BLOCK PRO_RAN
_LnC_ DATA
_OMM_N ICC_NII PTZ.CP.ETE.LIE.C_.FM.TF._.C2.PE_.PRN.FKSl,AKO,E_.

I_EAQAA,R_M_,RK,PRES,m[,SM,RH_E
_ATA PTZ/6,22E-191,CPtSIS.I,_T_I19?O,I,UEI395.61,C_/6.6?E'261,

1FM/9.107_-31/,TE/1920./,_I/2.4_OF2_/,C2/4.49_4/,P_R/.n2/,
2PRNI.68686?I,EKSII.OIt,AKO/8.B54_-I2t,ECI2.6n2F-191,flEAQAA/._/,
3ROMRI449.5775E-7/,RK/1.38E-23/_PRE_/164000./,P|43'24t64,

4SM/2.2_-25/,RHOE/.5/
FNn

F12



RIBOg 3 n7-17-A7 LAMDA CALCULATION

I

4
5
6
7
8
9

_0

1_2

'_4
15
"t6
,17

'tg
_0

_3

LAMDA L_M_A CALCULATION
qU_RMUTI_E LAMBA
_OMMON /_CMM_/ PIZ.CP,ETE,tJE,CM,FM,TF,_,C_,PE_,PRN,eKSllAKOIE@,

I_EAQAA,R_M_,BK,PmE_,Pl,SM,_WeE

_OMMON/CCOM2/ U(7),Ft7|;¥AMI,YAM2,VAMA,KFI_S7
ffOMM_N /_CBM3/ BPSP,EToTESTjS_ENE,NTBL

RPSP=RER_PRES

TEST=4,eBPSP/(U(4)*TEe_eBK| 3
IF{TFST,_T..O_) O0 TO _5 4
FNF=TEST*S/4,*iI.-TE_T/4.) 7
_0 T_ _0 8

_L_M?=I,REg*ETEIU(6)tENE._($,/3,) _1
_MM&=RKeTF.ENE.U(i)/P_E$ _2
_KSKA=(7,SF.Te(U(6|iETE)**_,_t(TEetI(4))e.,75)t(,_B=_LOS(_5_.&LAM_ _3

&KFKA=AKSKA/(_,.1,a$4214.$,/GAMMA.AK_KAeOEAOAA.SORy((EM/_M|_|U_4). _4
%_E}I(U_6).E?_)))
¥AM2=_EKAIU(d)I*{-._5)IPRN _5

500 _ETU_N _6
EN_ _7

FI3



03A29 3 07-12-67 DEPlVATIVE ROUTINE

1
2
3
4
5
6
7
8
9

50
11
12
13
54
!5
_6
17
58
59
20
21
22
23
24
25
_6
27
28
29
30
35
32
33
34
35

37
38
39
40
41
42
43
44

45
46
47
48
49

50
51

C DE,IV OEPIVATIVE ROUTINE
_U_ROUTINE DFRIV
rOHH_N /_C_MS/ PIZ.CP.ETEoUE.CM.FM.TE.C1.C2=PER.PRN.EKSI=AKO=EC=

I_E^QAA,RnvP,RK,PPES,PI,SM,RHOE

COMM_N/CCOP2/ U(7),Ft7),YAM1,YAM2,YAMA,KFIRST

rOMM_N /CC_M3/ BPSP,FT,TEST,S,FNF,NTRL

COMMON /CCnM4/ TFMPRA,QEAT,QFC_T,NTBA

nIME_,SfO_I TEHPPA(50),OEAT(50),QECST(50)
rAtL LAMnA
TF(KFInST.FO.O) YAMI=YAM2 2
KFIR_T=I 5
_T=U(6)_FT F 6

I n _ALL TABLEfT_MPRA,nEAT,OFCST,ET,_TRA,NTBL,QEA,_ECS) 7
1 _ _T_L=I 8

C _ALCULATF VAPIABLE_

C
2n ¢I=S.(3./(?..FT_.U(6)).C21_ETE,U(6)),,_),(..5_St_.,TEST*St4.}/(Se 9

%cORTfZ.+TERT}))

_2=((4..CM,Bpsp/(5.eTE.e?))eTE_M_).(TERMS/(S_RT(_.,TFST))) _
TEPMI:P_.UCb_**(1.5).(fEC/llE..B_l)*(EC/(AKO*E_EtI*lS./U(6)))_*2 12
TEPMp=ALnG((((32./FC}.(RKtEC)efE?E.AKO/EC)_.(($ORT(BW))/(SORT(ENE) t3

1)))*(SGRT(AKO*FTE)})
3n qEI=TE_MIeTEDM p _4

TE_M_=(QEAICM).(pRFS/(RK.T_))etl. ILI(4))÷tOFCSI_M)et(BpSP/(BKeTF})e 55

I(1./I_(4))-ENF)+((OFIISM)*E_E)
4_ _NUS=T_RMlaS_RT(((_.*BWeETE)/(PI*EM))eU(6)) _6

CALCULATE I_ERIVAT IVER.

F(1)=U(2) 57
r(P)=Uf3) .... _8
F(3)=U(4)**.PS*U(3)e(.25,U(4),*(-1.25)*UtS)-U(t}) 59
F(4)=U(5) _0
_S_IT_=RKmETFmU(6% 2t
TEPMI=YAMAaU(7)÷(U(1)III(4).U(7)/(RWOF,CP)),(5._eRK,ENEi(5.SeCSNTS, 22

lPI?}*SS}
_EPMP=Ij(5).U(1)/(RWOE._P.ETE)e((_.SeCSNTS÷PIT)eS2_ENFe(2tSeCSN_I_ 23

$pI7))
TEnM3=(E_E,U(4},?..EKSII(ROMR_IjE_,2}},t3._RK_ETEI(RHOE_CPeTE)).(EM 24

1.S_)UF)*tH(6)-TFeLi(4)/ETE)
5n F(7)=-t./yAM2.tTERM%-TFRM2_'_RM3) _5

TERM_=U(_)_U(5)_tUf4)**(.1.25)eU(5)ee2/(4.ePRN))+(UEeU(3))ee_eU(4) _6

l**(-.25)t(_P*T _ )
TEPM_:FTE/TE.(II(7)_YAMA÷YAM2,FI7))_pIz_(_ETE/I_H_FecP_TE_)eSI_II(5) _7

IIU(4)*II(7)-S_*LI(1)IUf4_*LI(5)/RHOF*ENE*IJ(5)eU(5}t(RHoEeCPeTE))
F(5)=_pRNeU(4)ee(.?5)efTERM_TFR_2 | 28

r(6)=U(7} 29
50 n QFTURN _0

FND 31

PI4



APPENDIX G

MHD BOUNDARY LAYER MAIN PROGRAM

=1

=l

NTIM6S : 0

_ E PC-d = I

C_kLEO&el

f

/ C _1-,U

k,,. N_TLST

L2

®

®

cA _.L

NXTLST

@

G1



MAIN PROGRAM (Cont.)

PCC :0

G2



SUBROUTINE REA DIN

8 FAD E'I_ ._

I "

I_PUT

D _'r P_

_1
DATA

1

G3



SUBROUTINE INITIA L

E Y,TEN O

Vj_/, _ V_LST

P_,O FIL_'$

_ k 0_'_ _J Jv_,iT

_ TO _O ,.__

1

6.,oe._ ?_TIE '

DA - 2_

I_oA : z/A' 5
E'r_2 : (a 9) _"

_E TI)R_

G4



SUBROUTINE EDGE 1

s£T EbC.E
Co_PlrZ6N$

A,'["

Tai_, 5.

(MED_-,tE- t I t D_._I J

/

G5



_2_., : tK,_

.... l

1.

Te., +_ "_? I

SUBR OUTINE N'XT LST

!

!

L- : : l l

O6



S) I Sz ) _3

C.c, _ f_7'E

I

i

!

SUBROUTINE ABCD

?
N_T L_T

COe'_uV_
#

O',]' af_

_v_' ' ')J'| i_).

Co_'FFIC(F_T_[
_o ,," , y'r r" ,,) J

I _._;_',' "1

F,'_ i-, ,. ( ,

E" TiJ K &

G7



I
i

z -A'Dz j
L

SUBROUTINE EKPK

Col,._, turT E

MN I:o11. I-0¢.

OF F-..,,-i

.
T'-- IjZ_ 2_

TE_e4.-I ,, 3

3"'- %,_.D $

A4.lt I :

61.

[ -',-I,i

L

IA: A 4 C xTE'Mt

C A L L Iv_I_TINV ]

A: (g • c, E,,.,)[

¢oI_PUT E N_

F o _ LO¢, 0t'

F___,

"'_'-_'_"L'-r_- oj,z-,--

Tet_P:C _(_._

D: P " TFMP

G8



SUBR OUTIN]_ _rNSUB

I Pcc --i.

w N = i.

®

G9



SUBROUTINE VMNSUB

C o _,'% # L/T IE'

V_

--Z

'_E T.

I,J LsT -- leV

GIO



C:4A IN

C

APPENDIX H

COMMON/COMI/BK,EMtECQCI,PI,AK0_R,Y( 1000),TEoDUM(10)_TWoEKSIS4EKSIM

I,DUMI(7),MEDGE,EKSI

COMMON/COM3/SMLHHC3),VII000),WLST( 1000e3),W(1000,3),TEEKSI(10)

COMMON/COMB/N,NPLI,PCC,NWRIT,KK,NK,CONST,N_TSToNTIMES,DUM3(9) _NVMN

RETURN HERE FOR START OF NEXT CASE

i0 MEDGE=I

NQTST = i

NTIMES = 0

NK = l

BK = 1.38E-23

EM = 9,I07E-31

EC = 1,602E-19

Cl = 2,42E21

Pl = 3.1416

A_G : 8,854E-12

Y(1) = 0*

: _,317E3

CALL _EADIN

4O CALL EDGE1

SMLHH(2) = TW/TEEKSI(MEDGE)

50 N = O

CALL NXTLST

60 N = 1

CALL NXTLST

70 N = N+I

CALL ABCD

CALL EKPK

IF (N_TST-N) 80_80,90

8O CALL TEST

H1



C

C

C

C

NRTST = N

IF (CONST) 90_200o200

90 IF {N--999) 704110o110

CONVERGENCE NOT ATTAINED, PRINT AND GO TO NEXT CASE

II0 _ITE (6t903l

NWRIT = NPLI

CALL WOSU3

GO TO 10

CONVERGENCE ATTAINED, GO TO NEXT PROFILE

200 CALL WNSUB

IF (PCC) 201,202o202

201 NK = KK

202 IF (KK-NK) 220,220,210

ITERATE UP TO (K-I) TIMES

210 NVMN = 2

NK = NK+I

CALL VMNSUB($50)

INITIALIZE FOR NEXT PROFILE

220 NK =

NVMN = |

NWRIT = NPLI

CALL VMNSUB($50)

IF (EKSIM-EKSI) 260Q260o40

260 WRITE (6,902}

N=NWRIT-I

PUNCH 900,((W(I,J),I=I,N},JRI,3)

PUNCH 900,(V(I},I=I,N)

PUNCH 901 , (N)

GO TO I0

900 F0_MAT 14E18,8)

1-12



901 FORMAT (TH NWRIT=t 14)

9C2 FORMAT ( 16H THATS ALL FOLKS)

903 FORMAT (36H CONVERGENCE NOT ATTAINE), TRY AGAIN)

END

I-f3



C,x(":.9 IN

SdBROUTINE REARIN

DIMENSION ARAK£1 (It])

C_MMON/COMI /V]UMI (] n IF_), l w, E KS IS, EKS IM, DK£ I, DUM2 (3 }, DE T A, TSQ$ I, DEL'T

IA. MEDGF, FK,£ I

_OMMON/COM2/EDGE ( ]z),11 ), TEMPRA (50 ), QE41 (50 ), QF.CST (50 )

CdMMON/COM3/SMLHH (3 ) ,V (I {)Or)), WLST (I OOD, 3 ), w (1000,3 ), TEEKS ! ( tO )

C_J_IMO_/cOM5/_, NPL I, PCC, NWR IT, KM, NK, CONST, NRTST, NT IMES, EPl, EP2, EP3,

iF _R ,EPP! ,_PP2, PPP,I, NPR IN I ,NTAB, NVMN

C_)MMON I_;0 l_IA,"n UM 3 (_5 ), C2, PF.R, Q IN, CP, ROMP, CM, r IW, T IWC, P IZ, SM, 8Z

I)IM_N_ION Fk (1.2)

_!,',MhLI£ T INA'IFI /BFL'T A, EKS IS,EKSIM, DKS [, DETA, ()IN, CM, SM, l"Iwe, CP,PFR, P

I/,C;2,@7,EPR,EPP! ,FPP2,EPP3,_P1,EP2,EP3

N,'_ME-LIKT/NAMF #/TEHPRA, QEA T ,QECST, EDGE, £ML HN, TEFKS I ,NWRIT

h_&MELlCTINAHF,SIKK,NTA8

_F:A_.; C_,9_! _(FF(1),I = 1,!.2)

C_LL SPt;14T-iR(_' f" }

_t-A[_ (rR,NAME1 }

[V_A ,) (_,NANF'2)

7 k('LAO (q. NAME.'_I

Ik (NW_'II .FO. t)) GO TO , 8

R_LA!_ (5,ROe}) ((W(] ,.I),I-"I,NWRIT),J--.1,3)

Ri:Ai) (5,P9O) (V([), [=.I.,NWRIT)

8JO Fq,HMAT (4E!A.8)

Gi) I0 "_

F(_iM_=3._F-7-':-FDGE(!,7).ETIGE(1,2)**.7b

W_'I IE (6,9nO) FKSIS,EKSIM, DKSI, DETA,(_IN

9_9 F_)R_!AI (THpF-K,qIS=f_16.8,3X,6HEKSIM=EI. 6_@,3_(,bHDKSI=Fth,8,3x,SHbFrA=

1E, 6. _, ?;_, 4Hi') I N'E1 {5. ,8// )

C., )UFL TA,ROMR,CM,SM,CP
9-_ nI_ELT A:E] 6. R, 3X .6NPQMR :EIO.R,3X,bHCM :EI6.H,3X,BHSP, =

w-'J IE f_,,9

FtJR_',AI (7H

W,xl IE (6,:)

1E 1 h, 8, ,Xx , 4
CALl JNITI

C *,LL Wf!SL!R

b

6

9L'7

NCP =EIA.8//)

nL')TIW,PFR,PIZ,CP,RZ
OiI_(z =kl6,8,3X,6MPER

N_i7 ;Elh.8//)
L

=E_6._,3X,bHPIZ =FI_.B,3X,SHCP =

w,Yl rE (6,9n_)

F _N.'-;AT (!NI/! 4X6H IFMPRA_OX4HQ_AT21XbHQFCS f/ _

w,vIIE (6,_O(_)('fEMPRA(T),(,IFAT(1),QECST(1),I = I,NTAB)

FUNM41 (1_ 6F?5.F_)

ki_._ --. {FK.RIM-._KSIS)/DKSI÷I.5

w_,I iE (_,QflT)

F ',.)_M A I" (I HI ,'".[}X4HEK£ 11 7 W2_4!JEtSXPNTEISx3HE IF17X3NDUEI7X3HDTE / )

A_VA_SI ('_) = F_SI£

I")0 1 N I : 2.NN

A,_A_SI(1) = AI._AKSI(I-_)÷DKSI

WRITE (_,9,'_,n)fARAKSI(1),(F_DGE(I,J)_.J .- 1,5),I = t, NN)

FORmal (1H 6_/O.R)

W_ITE (_, 90'9)

g!O

q999

FQRr'RA I (1H117X4NEK£ 113X4HDETE13XRNI_MOEI3XSHDRNOEI2XRHAJYEI4X3HEXE _

3 x4FiPI'_FS/ _

w_IIE (_,,VIO)(ARAK£|(1),(EDGE(I,j),j = 0,11_,I = I,NN)

FOR_IAI (IN 7E17,8}

FLIR,IA ] (1_AA)

Rr T/.IRN

E'4 D

t-I4



C

SUBROUTINE INITIL

CON4ON/COMI/DUMI(100?),TE,DUM2(10)oTWoDUM3(3},TDA,TDDAoDETA2oDETAt

IDUM4(4)

COMMON/COM3/SMLHHI3),V(i000) oWLST(IOOOo3)o_AI(IO00_3),TEEKSI(IO)

COMMON/COMS/N_NPLI,PCC,NWPIT,DUM5(15}

DO I0 I = I,NW_IT

DO II J : I_3

II WLST(I_J) = W(l.J)

I0 CONTINUE

IF (NWRIT-1000) 9,14,14

EXTEND PROFILES

9 NPLI = NWRIT+I

DO 12 I = NPLI,1000

V(1) = V(I-I}-DETA

D0 13 J = Io3

WLST(I,J) = I,

13 W(I,J) = I,

12 CONTINUE

14 TW = SMLHH(2}*TEEKSI(1)

TDA = 2,*DETA

TDDA = 2,/DETA

DETA2 = DETA**2

9999 RETURN

END

H5



CEDGE!

SUBROUTINE EDGE1

COMMON/COMI/DUMI(IOOT),TE,ETE,PREStAJYEtUEoDUE,DTE,DETE,RHOE'DRHOE

I,EXEoTWoEKSISoEKSIM,DKSIoDUM2(4}oTSQSIoDELTAoMEDGEQEKSI

COMMON/COM2/EDGE(IO,II),DUM3(150)

COMMON/COM6/DUM4(29),ROMR,CM,TIWoTIWCoDUMS(2},BZ

UE : EDGE(MEDGE, I)

TE = EDGE(MEDGEQ2)

ETE = EDGE(MEDGE,3)

DUE = EDGE(MEDGE,4}

DTE = EDGE(MEDGE,5)

DETE = EDGEIMEDGEo6)

RHOE = EDGE(MEDGE*?)

D#HOE = EDGEIMEDGE,8)

AJYE = EDGE(MEDGE,9)

EXE = EDGE(MEDGEo 10)

P#ES = EDGE(MEDGEoll)

ROM#:#HOE*3olE-G*TE**,?5

IF (AJYE) Io 2o 2

I TIW: TIWC

GO TO 3

2 TIW= O,

3 AA = MEDGE-I

EI<SI = EKSIS+AA_DKSI

MEDGE = MEDGE+I

TSQSI = SQRT(2o*EKSI)

9999 _ETU_N

END

I46



CT'_XTLST

SUB#OUTINE NXTLST

COMMON/COMI/BI<,EM,EC,CI,PI,AKO,R,Y( IO00),TEeETE,PRESoAJYE,UE,DUM(5

I),EXE,DUMI(7),DETA,TSQSI,DUM2(3)

COMMON/COM2/EDGE( 10,11),TEMPRA(50),QEATIB0),QECST(50}

COMMCN/COM3/SMLHHI3),V( IOOO),WLST( lO00o3)o_,t( IO00_3),TEEKSI(lO)

COMMON/COM4/DUM4(12000) 4H(3,3) _EF(3t3) oDUM_(60)

COMMON/COM5/N_NPLltDUM6(15) _NTAB_NVMN

COMMON/COM6/ELLS,EL,ELNX_YAMLS4YAM_VAMNX,P_NLS,PRN_PRNNXtALF1LStAL

[Ft,ALF1NXlALF2LS_ALF2,ALF2NXtS_GNX_THENX,ENXtCONX,SXM,_ETAX,QEI oQL

ZA,QECS,C2,PER,QIN_CP,#OMR,CM_TIW,TIVJCoPIZt£MQBZ

QEAQAA = , 1

P;PL 1 = N+ 1

ELLS = EL

EL = ELNX

YAMLS = YAM

YAM = YAMNX

P#NLS = PRN

P_Ix = PRNNX

ALFILS = ALFI

ALF1 = ALF1NX

ALF2LS = ALF2

ALF2 = ALF2NX

GNX = ,5*(W(NPLI,,,2)+WLST(NPLI,2))

THENX = ,5-x-(W(NPLI.p3)+WLST(NPLI.p3) )

ET = ETE*THENX

P_NNX = 2.,/3•

ELNX = GNX**(-.2.5)

S :C 1 -x'-( ET ) *'4- 1,5"X-EXP ( -C2/ET )

GiRP : 4,.-_I_ER/IBK.._S)*PRES/TE/GNX

IF (.OI-GI_P) 2. I.!

N?



I ENX = GRP/40_(I,-GRP/4,)*S

GO TO 3

2 ENX = S/2o*(SQRT(Io+GRP)-Io)

3 ENUIN : (OIN/BK)*(PRES/GNX/TE)*SQRT((Bo*BK*TE*GNX)/(PI*EM))

CALL TABLE(TEMPRAQQEAT,QECST_ETqNTAB,NoQEAoQECS)

QEI = pI_((EC/AKO)*(EC/(16,*BK*ETE*THENX)))**2

OEI = QEI_ALOG(32,_(BK*ETE)**I,B/EC/EC*AKO**Io5/(EC*ENX**o5)

I_(THENX*_I,5) )

SQT = SQRT(Se*BK/EM#ETE*THENX/PI)

ENUE = ENUE*SQT

CONX = EC/EM*EC*ENX/ENUE

BETAX = BZ*EC/ENUE/EM

BETAI = BZ#EC/ENUIN/CM

SXM = lo+BETAX*BETAI

A1 = lo24E?*ET**Io5/ENX**o5

A2 = 1,8E5*ET/ENX**(I,/3,)

GAM = ENX_(BK*TE/PRES)*GNX

BKSKA = 3,E-6*ET**2eS/(TE_GNX)**o?5/ALOG(55o+Al_*_+A2**4)

BKEKA = BKSKA/(1,+BETAX**2)/(I,+lo414*( I_-GAM)/G AM_BKSKA_

1 (QEAQAA)_SQRT(EM/CM*GNX*TE/ET))

YAMNX = ELNX/PRNNX_BKEKA

ALFINX = I,/SXM

ALF_NX = CONX*BETAI/SXM

IF (N_LI-I) 515,9999

5 GRP = YAMNX*CP*ROMR*UE*(EC/BK}/TSQSI/DETA

AJEY_ = ALF1NX*AJYE+ALF2NX_EXE

SCR_ = (AJYE+TIW)/EC/ENX*SQRT(2o*Pl _EM/(BK*ETE*THENX) }+SQRT((2_*PI

I*EM)/SM)

B2 = 2,*GRP/((2_-ALOG(SC_B))*(AJYE+EC_ENX*SQRT(BK*ETE*THENX/SM

1))+loS*G_P-2o5*AJEYW+2o*TZ_)

- _8



B3 = -,25_B2

DO 10 d = lt3

DO 11 I = 1,3

H(I,J) = O,

11 EF(IQJ) : O,

I0 CONTINUE

H(3,3) = B2

EF(3o3) = B3

SMLHH(3)=B2*WLST(2,3)+B3_WLST(3,3)-,JLST(1,3)+4o_TE_GNX_TIW/ETE

1/(2,_GRP/B2)

9999 W#ITE(6, iOO) YAM, _ETAX, ENX, BETAI, CONX* SCRB, BKEKA

i_0 FOqMAT (7E17.4)

RETURN

END

1-19



CTABLE

SUBROUTINE TABLE(TEMP,QEA,QECSoARGS,KTAB,N_XQEA,XQECS)

DIMENSION TEMP(50),QEA(50),QECS(50)

XTEMP = ARG6

9 IF (N) 10o101,10

10 IF (XTEMP-XTEMPL) 101,11_11

101 J = 1

NTAB = KTAB

11 NTAB1 = NTAB+I

K=J-1

CALL TLUI (XTEMP*NTABoTEMP(J)*J*IERR)

IF (IER#) 13o14,13

13 W_I FE (6,901)XTEMP

GO TO 9999

14 NTAB = NTAB1-J

J = J+K

IF (NTAB) 9999,9999,15

15 XQEA = TNTI(XTEMP,NTAB,TEMP(J)*QEA(J)*20|E#R)

XQECS = TNTI(XTEMP,NTAB,TEMP(J),QECS(J)*2tlERR)

16 XTEMPL = XTEMP

901 FORMAT (34H THIS TEMPERATURE IS NOT IN TABLE-,El6,8)

9999 _ETU#N

END

HIO



CABCD

SUBROUTINE ABCD

COMMON/COM1/BK,EM,EC,CI,PI,AKOqR,yI IO00),TEtETE_PRESqAJyE_UE,DUE,D

ITE,DETE,RHOE,DRHOE,EXE,TW,EKSIS,EKSIM,DKSIoTDA,TDDA,DETA2_DETA,TSQ

1SI,DELTA,MEDGE,EKSI

COMMON/COM3/SMLHH(3) _V( IO00)oWLSTI lO00Q3)o_t(IO00_3),TEEKSI(IO)

COMMON/COM4/EI3OOO,3),PHI(IOOOo3)_H(3t3),EF(3,3),TEMP(3,3)tAA(3,3)

1,eI3,3),C(3,3),D(3),A(3,3),CKMAT(3Q,])eTEMPp(3)

CCMMON/CO_5/NQNPL1,DUN!(15),NTAB,NVMN

COMMON/COM6/ELLS,EL,ELNX,YAMLS,YAM_YAMNX,P_NLS_PRN_PRNNX_ALF1LS,AL

1F1,ALF1NX,ALF2LS,ALF2,ALF2NX,S,GNX,THENX,ENXtCONX,SXM,BETAX,GEI,QE

£A,QECS,C2,PER,QIN,CPoROMR,CM,TIW,TI"IC_PIZoSMoBZ

FP = ,5_(W(N_I)+WLSTIN.I) )

G = GNX

THETA =

BETAE

COND =

ENE =

SUM =

DO 10

10 D(I) =

DO II

11

THENX

= BETAX

CONX

ENX

SXM

l=It3

O.

I=i_3

DO II J=It3

AA(I_J)=O,

B(I,J)=O.

C(I,J)=O,

_NU_ = (P_Eb/BK_QEA)/TE/G/CM+(QECS/SM)_(PER*PRES/TE/BK/G-ENE)+(EN

IE_QEI )/CM

bNUS : SNUS*DELTA*SQRT(8,*BK_ETE*TH_TA/_I/EM)

GRP = PRES*PER/BK/TE/G

SI = S*(I.B/ETE/THETA+C2/(ETE*THETA)**2)*(--,5+(S/2.+GRP)/S/SQRT(I,

I+4,*G_P/S)) HII



52 = .8_(CM/BK)_GRP/TE/G/_QRT(le+_I_G_P/S)

$3 = 2o_GRP/PR_S/SQRT(1.+_o_GRP/S)

FPA : (WLST(N+I,I)-WLST(N-I,I))/TDA

FPAA = (WLSTIN+lql)-2._WLSTIN01)+WLSTIN-I_I))/DETA2

GA = (WLSTIN+I,2)--WLST(N-I_2))/TDA

GAA = (WLST(N+I,2)-2o_WLST(Nt2)+WLSTIN-tt2))/D_TA2

THA = (WLST(N+I.3)-WLST(N-I_3))/TDA

THAA = (WLbT(N+Io3)-2o_WLbT(No3)+WLSTIN-lq3))/QETA2

RHOb = R/PRES/q_o_TE_(wLbT(N*2)+WLST(N-I*2))

Y(N) = Y(N--[)+TSQSI_HOS_*_U_FA/UL

CALL NXTLST

ELA = (ELNX-ELLS)/TDA

YAMA = (YAMNX-YAMLS)/TOA

PRA = (PRNNX-PRNLS)/TDA

ALFIA = (ALF1NX-ALFI_S)/TDA

ALF2A = (ALF2NX-ALF2LS)/TDA

Vl = V(N)

Qt = DKSI/I4e_EKSI_F_#TOA)

Q2 = 2.5_BK*ETE/EC_TSQSI/(NOi_UE_C _TE}

Q3 = DKSI_DTE

Q4 = pIZ/(RHOE_CP_TE)

Q5 = 1.5_BK_ETE_THETA+pIZ

Q6 = 2oS*BK*ETE_THETA+PIZ

Q7 = 5o_BK/EC_RHOE_ETE_UE/T_QSI/G

Q9 = #OM#_UE*12

QO = _HOE_CP_ETE_Q9

Q8 = #HOE_CP_TE_Q9

QIO = I_5_BK_ENE

FI = FP

FP = WLST(N_I)

HIZ

G = WLST(N_)



THLTA = WLSI(N_3)

AA(lo2) = U,

_A(lt3) = _.

_(1.1) = I*+DKSI*OUE/2*/JE+4**QI*EL/DETA

m(1.2) = -Dt<SI_DUE/(2**UE_eF1 )

d(l.3) = O,

C(I.2) = 0.

C(I.3) = 0.

D(1) = FP*(1.-DKSI*DUE/2./uE)+(DKSI/4./EKSI/F1)*(-FPA*VI+2.*EKbI_G

I_DUE/UE+ELA*FPA+EL*FPAA)

= --2.*QI*UE**2/CP/TE*EL*FPA

= QI_(V1-2._EL/PRN/OETA--ELA/PRN+Q4*ENE_Vl-PIZ*S2_VI*G/RHOE

AA(2.1)

AA(2_2)

1)

AA(2o3) = QI.(-2..EFE.YA_/DEIFA/TE-ETE.YAMA/TE-Q2.(ALF1.AJYE+ALF2.E

1XE)+Q4eETE*Vl*SI*G)

_(_,I) =

_(2.2) = I.+DKSI*UE*DOE/I2._CP*TE)*( l.-PIZ,53)+4.*QI*EL/PNN/DETA+u

13/2./TE+(Q4_SI)*THETAWQ3/2.-_IZ_2_G/RHOE-pIZwC#_Q3em2_G/_HOE/Ui

B(2.2) = B(212)+DKSI/2.*UE*DUE*(ENE_Q4)+(pIZ_ENE)/CP/RHOE/TE+(Q4_

1ENE)/2./TE*Q3-DKSI*COND_eEXE_£*2/Q8/2./F1/SUM-DKSI_AJYE*_£2_(SUN*_2+

2BETAE**2)/(2.*COND*FI*QS*bUM)+DKSI*%JYE*BZ.(1.-PIZ*S3)/2.*UE/QB-

3DKbI*(PIZ*ENE)_BZ/2./P_S*_/_8*AJY_

_(2.3) = 4.*QI*ETE*YAM/DETA/TE-Q2*DKSI/8./FI/EKSI*(AJY_ALF1A+EX_

1ALF2A)+Q4_ETE*SI*G_Q4*SI_G_eU3/2.

C(2.1)

C(2.2)

I)

C(2.3)

I*SI*ETE*VI*G)

= -AA(2. I)

= QI*(-V1-2.*EL/DETA/PRN+ELA/PRN-Q4_ENE*VI+PIZ_S2*VI*G/RHOE

= QI*(ETE/TE*(-2.*YAM/DETA+YAMA)+Qa,(AJYE*ALFI+EXE.ALF2)-Q4

HI3



9999

U(2) = G-Q3*G/2o/i-6-(Io-PIL_3)*_E*DK_I*G/(2e *_*T_)*D_E+_°*oBT_*_

II.(EL/PRN.GAA+GA_(ELA/PRN-VI)+ETE/TE*(YAM*THAA÷THA_YAMA)+Q2_(THA_

_AjYE.ALFI+EXE_ALF2)+THETA*(AJYE*ALFIA+EXE*ALF2A))-Q4*ETE*aI*G*THA_

3VI-Q_.ENE*GA*VI+PIZ*S_*VI*G*GA/RHOE_2o*G*EKSI/a_M*(COND_EXE**2+AJY

4E**2/COND. ISUM**2+BETAE**2))/Q8)+Q4e_I*ETE.G*THETA-PIZ*S2*G*_2/_HO

5E-DKSI.UE.RHOE*(Q4*ENE)*G/2,/PRES*DUE+Q4*ENE*G+DKSI*AJYE*BZ/2.*UE

6/Q8*(G*(I.-PIZ*_3)+G*PIZ*ENE/P_E_}-Q4*EN_*Q3*G/2./TE

AA(301) = O.

AA(3o2) = (ENE/Q*Q6-_2*QS*CP*TE)*Qg*Vl/8o/EKSI/DETA

AA(3.3) = Q9,ETE/4./EKSI/DETA*(VI/2.*(QIO+SI*Q5)-CP*RHOE/Q*(YAM/D&

1TA+YAMA/2.))-QT/So/D_TA*(ALFI_AJYE+ALF2_XE)

B(3.1) = THETA*(Q9*DETE/2.*(QIO+Sl*Q5)-.75*E TE*BK*S3*UE*(-AJY_#BZ+

1Q9*RHOE*DUE))-(ENE*Q6)*Q9*D_HOE/2o/_HOE-S2*QS*Q9/2o*CP_DTE *G-PIZ

2*S3/2o*(Qg*UE*RHOE*DUE-UE*AJYE*BZ)

B(3.2) = Qg*FP*((ENE*Q6)/Q/DKbI-(QS*S2)*CP*(TE/DKSI+DTE/2o))-QIO*

ITE*(EM*SNUS)

B(3,3) = (QIO+bI*Q5)*Qg*(TE*FI/DKbI+,5*DETE*FP)-,75*DK*ETi*b3*FP*_

19*_HOE*UE*DUE+QO*YAM/2o/(EKbI*DETA*._2*Q)-.25*QT*(ALFlA*AJYE+ALFZA*

2EXE)+QlO*ETE*(EM*SNUS)+.75*ETE*UE*S3*AQYE*BZ*FP*_K

C(3,1) = O,

C(3,2) = -(ENE/Q*Q6-S2*Q5*CP*TE)*Q9*VI/8,/EKSI/DETA

C(3,3) = -(QtO+QS*SI)*Qg_ETE*VI/8,/EKSI/DETA-QO*(YAM/DETA-YAMA/2")

I/4,/EKSI/DETA/Q+Q7/DETA_(ALFIWAJYE+&LF2WEXE}/8,

D(3) = Qg*ETE*(QIO+QS*S1)*(+F1/DKSI*THETA-Vl*THA/4o/EKSI)+Qg*(ENE/

1G*Q_-S2*Q5_CP*TE)*(FP*G/DKSI-Vl*GA/_o/EKSI)+ENE_Q6*Qg_5/RHOE*DRHO

2E*FP

D(3) = D(3)+PIZ*S3/2o*FP*(Qg*RHOE_UE*DUE--_E_AJYE_Z)+QO*(YAM*THAA+

1YAMA*THA)/4./EKSI/Q+,25*Q7*(THA*(ALFl*AJYE+ALF2_EXE)+THETA*(ALFIA*

2AJYE+ALF2A*EXE))+COND*EXE*_2/_UM*_2&AJYE**2/COND*(SUM**2+BETAE**2)

3/5UM**2+QIO*TE*G*(EM*SNUS)-QIC*ETE*THETA_(EM*SNU5)

RETURN

HI4
END



¢EKPK

SUBROUTINEEKPK

CON40N/COM3/SMLHH(3),UUIvil(701_)

COMMON/COM_/E(3uuU,3),PHI(100u,3)oH(3,3),EFC3,3),TEMP(3,3),AA(2,3)

1,B(3,3),C(3,3),D(3),A(3,3),CKMAT(303)oTEMPp(3)

COi_MON/COM5/N4NPL1,DUNi(17)

DIMENSION SCRACH(3,3)

IF (N--2) lu,lO, 14J

iO UO 4J I = 1,3

DO 30 J = 1o3

A(I,J) = _(I,J)

TEMP(I,J) = AA(IoJ)

DO 20 I< = 1,3

A(I,J) = C( I,K){H(Ktj)+A(I,J)

2U TEMP(I,J) = C(I,K)*EF(K,J)+TEMP(I oJ)

3u CI<MAT(IoJ) = A(I,J)

40 CONTINUE

50 CALL MXINV

DO 80 I = 1,3

DO 70 J = 1,3

AA(IoJ) = O,

DO 60 K = lo3

60 AA(IoJ) = A(IoK)*TEMP(K,J)+AA(I,J)

7U CONTINUE

8u CONTINUE

DO 110 I = lo3

E(6ol) = -AA(3,1)

E(4,1) = -AA(I,I)

TEMPP(I) = C,

DO 100 J = lo3

1uU TEMPP(1) = C(I,J)_bMLHH(J}+TEMPP(I }

H15
110 D(1) = D(1)-TEMPP(1)



DO 130 I = lq3

PHI(2,1) = O,

DO 120 J = 1.3

120 PHI(2,1) = A(I,J)*D(J)+PHI(2ol)

130 CONTINUE

GO TO 9999

14U MN = (N--i)_3--2

DO 160 J = It3

TEMPi3*J) = E(MN+2.J}

A(3.j) = _(3.J)

TEMP(2.J) = E(MN+I*J)

A(2.J} = B(2oJ)

TEMP(1.J) = EIMN.J)

160 A(1.J) = 8(1.J)

DO 190 I = 1.3

DO 180 J = 1.3

DO 170 K = 1.3

170 A(I_J) = C(ItK)*TEMP(K*J)+A(I*J)

180 CONTINUE

190 CONTINUE

200 CALL MXINV

DO 230 I = 1,3

DO 220 J = 1.3

TEMPi I.J) = O.

DO 210 K = 1.3

210 TEMP(I,J} = A(I.K)*AA(K_J)+TEMP(llJ)

220 CONTINUE

230 CONTINUE

M = 3,N-2

DO 250 I = 1.3

E(M+2. I) = -TEMP(3. I)

E(M+I. I) = -TEMP(2. I )

H16
250 E(M*I) = -TEMP(I*I}



DO 270 I = Io3

TEMPP(I) = O,

PHI (No I} = O,

DO 260 J = 1,3

260 TEMPP(1) = C(I,J)*PHI(N-I,J)+TEMPP( I}

270 D(1) = D(1)-TEMPP(1)

DO 290 I = 1,3

DO 280 J = 1,3

280 PHI(N, I} = A(I,J)*D(J)+PHI(N,I}

29O COBFINUE

PI=PHI (N,I)

P2=PH[ (N,2)

P3=PH[ (N43)

9999 #ETU#N

END

HI7



CTEST

SUBROUTINE TEST

COMMON/COM3/SMLHH(3),DUMI(7OIU)

COMMON/COM4/E(3000,3),PHI (100vo3),DUM2(?8)

COMMON/COMS/N,DUM3(5),CON_T,DUM4(2),EPI_EP2_EP3,DUMS(?)

M = 3.N--2

TERMI = ABS(I,-E(Mt I)--E(M,2)--E(M,3)--PHI (N_I) }

TERM2 = ABS(i,-E(M+i_I)-E(M+IQ2)-E{M+IQ3}-pHI(N,2))

TERM3 = ABS(I,-E(M+2_I)-E(M+2,2)-E(.4+2o3)-pHI(N,3)}

IF (TERMI--EPl}

I IF (TERM2-EP2)

2 IF (TERM3-EP3}

I00 CONST = -lo

GO TO 9999

3 CONST = O,

9999 RETURN

END

I,I0_,10

H18

h_



C_NSUB

SUBROUTINE WNSUB

DIMENSION AAA(3) _BBB(3)

COMMON/COM3/SMLHH(3) ,V(10Ou),WLSTI 1OO0t3)QW(IOb0_3},I-EEKS| (10)

COMMON/COM4/E(3000,3),PHI (1000Q3)4H{3,3),EF(3,3) oTEMP(303) _XH(St)

COMMON/COMS/NoNPLI,PCC,DUM2(1C),EPP1,EPP2,EPP3QDUM3(3)

NPLI=N

DO 10 I = 1_3

lU W(N, I) = io

PCC = --I-

35N=N--1

TERM1 = W(N_I)

TK#M2 = W(N,2)

TERM3 = W(NQ3)

MN = 3"N--2

O0 50 I = 1_3

TEMP(3,I) = K(MN+2, I)

TEMP(2,I) = E(MN+I, I)

50 TEMP(I,I ) = E(MN_ I)

DO 70 I = 1,3

W(N,I) = O,

DO 60 J = lt3

60 W(N, I) = TEMP(I,J)*W(N+I,J)+W(N,I }

70 W(Nq I) = W(N_ I)+PHI (N_I)

IF (N--2) 75o75,20

20 IF (PCC) 30,30,3

30 IF (ABS(TE_MI-W(Nol))-EPPl) 1,1,100

I IF (ABS(TERM2-W(No2))-EPP2) 2,2,100

2 IF (ABS(TERM3-W(No3} }-EPP3) 3,3,100

100 PCC = +1,

3 IF (N--2) 9999,9999,35

75 DO 90 I = lt3 H19

AAA(I} O,



8O

9O

9999

BBB(I)

DO 80

AAA(I)

BBB(I)

W(I,I) =

GO TO 20

RETURN

END

= Oo

O = lq3

= H(IoOI_W(2.o)+AAA(I)

= EF(IoO)_W(3.J)+BBB(I )

BBB(I)+AAA(1)+SMLHH(I)

H20



CVMNS_B

SUBROUTINE VMNSUB(*)

COMMON/COMI/DUMI(IoIg),EKSIStEKSIMoDKSI,TDAoTDDA,DETA2oDETA,DUM2(3

I)tE_SI

COMMON/COM3/SMLHHI3),VI lOOO) tWL5T( IO0_o3),W( IQOQ_3).TEEK5I I IO)

COMMON/COMB/DUM3(18) oNVMN

TERM1 = EKSI*DETA/DKSI

TE_M2 = DETA/_.

DO I0 I = 2oi000

I0 V(1) = V(I-I)--(TERMI+TERM2)*(W(I,I)+W(I-I_I))+¢TERMI-TERM2)*(WLST(

11.I)+WLST(I-I_I))

GO TO (29o99) oNVMN

29 DO II I = I,i000

DO 12 d = I_3

12 WLST(I,J) = W(I,J;

11 CONTINUE

CALL WOSUB

GO TO 9999

99 RETURN 1

9999 RETURN

END
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CWOSUB ~

SUBROUTINE WOSUB

COMMON/COMI/DUM(7),Y(IOOO),DUMI( 12},EKSISQFKSIMoDKSIoDUM2(6),MEDGE

I,EKSI

COMMON/COM3/SMLHH(3),V(IOOO)QWLST¢IOOQe3),w(IQQQo3)'TEEKSI(IO}

COMMON/COMB/N,NPLI,PCC,NWRIT,DUM3(I%)

IF (I-MEDGE) 1,2,1

2 EKSI = EKSIS-eS*DKSI

DO I0 I = 2,NWRIT

I0 Y(I} = y(I-l)+le

GO TO 3

I EKSI : EKSI+e5_DKSI

3 WRITE (6,902}{EKSI}

902 FORMAT (IHI/5 HEKSI=EI6"8/)

WRIFE (6,903)

903 FORMAT (IHOIIX2HFPlgXIHGI6XSHTHETAISXIHVIgXIHY/)

WRITE (6,904)((W(I,J),J = It3)oV(I},Y(1)'I = I,NWRIT}

904 FORMAT (IH 5E20e8)

9999 RETURN

END
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SUBROUTINE MXINV

COMMON/COM4/DUMI( 12057),A(3,3),DWM2(12)

DIMENSION S(3,3)

S(I,I)= (A(2,2)*A(3,3)-A(2,3)*A(3o2))

S(2, I )=-(A(fi,l )*A(3,3)-A(2,3)*A(3Q i))

S(3, 1)= (A(2,1)*A(3,2)-A

_(1,2)=-(A(1,2)*A(3,3)-A

S(2,2)= (A(I,I)*A(3,3)-A

S(3,_)=-(A(I,I)_A(2,3)-A

S(1,3)= (A( 1,2)*A(_,3)-A

S(2,3)=-(A(I,I)*AI2,3)-A

S(3,3)= (A(Iql)*A(_,2)-A

_,2)*A(3, 1))

1Q3)*A(302_)

1,3}*A(3, 1))

1,2)*A(3,1))

1,3)*A(2,2))

1,3)*A(2oi))

1,2)_A(2_ I) )

DETiR=A(I,I)*S(I,I )+A(I,2)*S(2,1)+A(Io3)_S(3,1)

O_ 11 I=1,3

DO 10 J=Io3

10 A(I,J)=S(I,J)/DETER

11 CONTINUE

9999 RETURN

END
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